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Convolutional Neural Networks for Image Recognition 4=y

Samoyed (16); Papillon (5.7); Pomeranian (2.7); Arctic fox (1.0); Eskimo dog (0.6); white wolf (0.4); Siberian husky (0.4)
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Convolution with Pooling generates feature maps
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Vision Transformer (ViT) VISION B
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Vision Transformer (ViT) VISION
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Self-attention with tokenized patches generates sequence features

Figure source:

https://ai.googleblog.com/2020/12/transformers-for-image-recognition-at.htmi
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Figure source:
https://ai.googleblog.com/2020/12/transformers-for-image-recognition-at.html
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Ways to Improve VISION

- Data efficiency: ViT usually underperforms ConvNets when given a
smaller amount of data.

- Expensive computation: Learning self-attention cross all
pixels/patches is expensive with long sequences.

« Interpretability: The interpretability of ViT is under-discovered.
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Contributions of Our Work MENENY

New concept with simple implementation (10+ lines of code).
- Improve ViT ImageNet benchmark from 81.8% —> 83.8%b0 (20%0 reduced params).

State-of-the-art on data efficiency experiments.
Interpretable tree-like structure.

Speed up training convergence by 3 - 8 times.
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Aggregating Nested Transformer (NesT) VISION
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Aggregating Nested Transformer (NesT)
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Golden retriever

T
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Block aggregation

Blocking image to
patches [6, 7, 8, 9, ...]

(#block/4, seglen, d)
Block aggregation

(#block, seqlen, d)

RN Linear projection

Google Research

Achieving non-local communication via the
proposed aggregation function.

Decouple local feature learning and global
feature communication processes.

It resembles decision tree-like structure
that offers interpretation benefits.

Easy to implement.

© 2022 Google
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NesT Pseudo-code VISION

summit

Golden retriever

T Pseudo code: NesT

# embed and block image to (#block, seglen,d)
x = Block (PatchEmbed (input__image))

for 1 in range (num_hierarchy) :

(#block/16, seqglen, d) # apply transformer layers T_i within each block
# with positional encodings (PE)
Block aggregation y = Stack ([T_i(x[0] + PE_i[0]1), ...1)
if i < num_hierarchy — 1:

# aggregate blocks and reduce #block by 4
x = Aggregate(y, 1i)

Blocking image to
patches [6, 7, 8, 9, ...]

—_— (#block/4, seqlen, d) h =IGlobalE}ngool (x) # (1,seglen,d) to (1,1,d)
logits = Linear (h[0,0]) # (num_classes,)

Block aggregation

def Aggregate(x, 1):
z = UnBlock (x) # unblock segs to (h,w,d)
z=_ConvNormMaxPool 4 () # (1 /2 /2 )

return Block(z) # block to seqgs

(#block, seqlen, d)

e Linear projection
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Aggregation Functions: Design Matters! VISION

Output sequences from local Input sequences to local
transformers at hierarchy L transformers at hierarchy L+1
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» Block aggregation reduces the spatial size by 2x2.

- Small kernels on image plane is important.
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ImageNet Results VISION
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ImageNet benchmark ImageNet benchmark with

ImageNet-22K pre-training

Arch. base Method | #Params | Top-1 acc. (%)
ResNet-50 25M 76.2 | VIT-B/16 | Swin-B | Nest-B
Convolutional ~ RegNetY-4G 21M 80.0
RegNetY-16G QAM 829 ImageNet Acc. (%) | 840 | 860 | 86.2
Transformer VIT-B/16 86M 77.9
full-attention DqT—S 22M 7.8
DeiT-B 86M 81.8
Sw@n-T 29M 81.3 Note: DeiT is VIiT trained with strong data augmentations (which
Swin-S S50M 83.0 are used by most following papers). In rest of presentation, we
Transformer  Swin-B 88M 83.3 mostly compare with DeiT.
local-attention
NesT-T 1'TM 81.5 DeiT: Training data-efficient image transformers & distillation
NesT-S 38M 83.3 through attention, ICML2021
NesT-B 68M 83.8

Three different sizes: T: Tiny, S: Small, B: Base
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Convergence and Effects of Data Augmentation VISION B

co
Ln

__________ =4
8of R ,
§ """" Augmentation A;SLEEN?;/ )
575 Removed y {7
o DeiT-B | NesT-T
= 70
4]
= DeiT-S None . 81.8 81.5
5,65 Swi RandomErasing 4.3 81.4
S win-S
E gl Ne<T-S RandAugment 79.6 81.2
NesT-B CutMix&MixUp 75.8 79.8
PS030 200 250 300
Total training epochs
{30, 60, 100, 300}
NesT uses less training time to reach similar NesT is much more robust to data
performance. augmentation ablations.
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Data Efficiency Experiments: CIFAR Results VISION B
| Arch. base Method | C10(%) C100 (%)

irpl Sy | > s 9409 . Pyramid-164-48 95.97 80.70
N E=i====€ Convolutional * yrpN28-10 9583 80.75
| 1 BN S 92.44 69.78

cat .‘--ﬂ- Transformer DeiT-B 92.41 70.49
doe B s N ¥ ‘-j!. full-attention  PVT-T 90.51 69.62
dog B e [ SR PVT-S 92.34 69.79
horse .. }i"*“' CCT-7/3x1 | 94.72 76.67
ship =[ET P Swin-T 94.46 78.07
T I g B[ Swin-S 94.17 77.01

truek ‘ . ﬁ . ’ . H - Transformer Swin-B 04.55 78.45

local-attention

CIFAR10/100 datasets have 60k ﬁeST'T 2604 7860
. . . esT-S 96.97 81.70
images with 32x32 resolution. NesT-B 97.20 82.56

PVT: Pyramid vision transformer, Wang et al., ICCV2021
CCT: Escaping the Big Data Paradigm with Compact Transformers, Hassani el al.,Arxiv, 2021
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“"Deep neural networks usually do not explain their
predictions, which is a barrier to their adoption in the

real world.”
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Interpretability of NesT VISION
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« Tree Traversal to locate the class-aware decision path.

» Class Activation Map (CAM) to locate objects.
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GradCAT: Interpretability via Tree Traversal

Golden retriever

T

(#block/16, seqlen, d)

Block aggregation

Blocking image to
patches [6, 7, 8, 9, ...]

(#block/4, seglen, d)

Block aggregation

(#block, seqlen, d)

RN Linear projection

Google Research
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Each node only processes information
over corresponding regions.

Block aggregation combines information
of adjacent nodes.

It resumes a decision tree-like structure
that naturally has interpretability benefits.

17



embedded
GradCAT: Interpretability Visualization VISION
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GradCAT: Interpretability Visualization VISION B
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Top1: Blenheim spaniel Top2: Tabby cat

0.58 Top4: Sussex spaniel

Given the left input image (containing four animals), the figure visualizes the top-4 class
traversal results (4 colors) using an ImageNet-trained NesT (with three tree hierarchies).

Each tree node denotes the averaged activation value.

Top3: Tigger cat 058
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Gradient-based Class-aware Tree-traversal (GradCAT) Q4EiSNy
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argmax Algorithm 1: GradGAT
S l o Define: A; denotes the feature maps at hierarchy [. Y. is the logit
salient patch ' v of predicted class c. [}2 x 2 Indexes one of 2 x 2 partitions of input
1|9 7] 2 maps.
3 ? 1 S Illpllt: {A;‘l = 2, ...,Td}, ar, = ATd* P = U
O LayerL:loghs  Class Output: The traversal path P from top to bottom
Layer - 1: —
mgy:;ﬁvaﬂon forl = [Ty. ..., %lydo | o
maps i »> h =0 (—5=) # obtain target activation maps
Layer - 2: : FL; = AVgPDOl2x2(hg) c R2X2
target activation maps - - - — - __________/ " - . . ) _
Layer 0: Image space n; = argmaxh;, P = P + [n]] # pick the maximum index
) a; = Ai[nf]2x2 # obtain the partition for the index
) end for
Bottom Top
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GradCAT Results on ImageNet cmbedded
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GradCAT Results on ImageNet isic
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Class Activation Map (CAM) Visual Object Attention VISION B
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Golden retriever
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(#block/16, seglen, d)
Block aggregation

Blocking image to
patches [6, 7, 8,9, ...]

Class Activation Mapping

(#block/4, seglen, d)

Class
Activation

Block aggregation + Wy« s AW

1

...... Figure 2. Class Activation Mapping: the predicted class score is mapped back to the previous convolutional layer to generate the class

activation maps (CAMs). The CAM highlights the class-specific discriminative regions.

(#block, seqlen, d)

e Linear projection

Learning Deep Features for Discriminative Localization, Zhou et al.
CVPR2016
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Qualitative Comparison Results VISION

Ground truth Input Image ResNet50 GradCAM++ DeiT Rollout NesT CAM
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Apply NesT to Image Generation ;/J%I%II\I

- Replace Block Aggregation with

BIOCk De'aggregation. n . n

inputs to patches
for nodes

i ' 67851
. Use Pixel Shuffle to achieve de- - Block de-aggrogaton

aggregation (i.e., upsampling).

"\ \ i //’

Block e—aegation

\_

t? channels High-resolution image

!

Golden retriever

Y
Pixel shuffle

Pixel Shuffle: Real-Time Single Image and Video Super-Resolution Using an
Efficient Sub-Pixel Convolutional Neural Network, Shi et al., CVPR2016

GOOQ'G Research © 2022 Google 25
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Image Generation on ImageNet VISION B
Comparison of architectures Comparison of block de-aggregration
100 ¥ —-——--%———-T - #Params  Throughput %
201 D& onviet —or PSC3 Method (millions)  (images/s)
—8— TransGAN —e— C3-PS

—8— Transposed NesT 801 —o— NN-C3 Convnet
A 40t A -¥- C3-NN (failed) [63] 77.8M 709.1
o = 69 ‘\.\;._ PS (Ours) TransGAN
30l » - [28] 82.6M 67.7
.\.\F Transposed NesT | 74.4M 523.7
20k ; : ; ; . 20L : ; i = —
200 400 600 800 1000 200 400 600 800 1000
Iterations (1000x) Iterations (1000x) *Measure on single V100 GPU

Different de-aggregation designs:
PS: Pixel Shuffle

C3: 3x3 transpose convolution

NN: Nearest neighbor

FID: Fréchet inception distance

- Transposed NesT firstly demonstrates ViT-based architecture can achieve faster convergence than
ConvNet-based architecture for image generation.

- See Improved Transformer for High-Resolution GANs, NeurIPS2021, for extended work on this task.

Google Research © 2022 Google 2


https://arxiv.org/pdf/2106.07631.pdf
https://en.wikipedia.org/wiki/Fr%C3%A9chet_inception_distance#:~:text=Unlike%20the%20earlier%20inception%20score,used%20to%20train%20the%20generator.
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RN Linear projection
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A novel architecture that simplifies previous
designs via the proposed aggregation function.

A new interpretability method that make NesT
interpretable by tree traversal.

Competitive ImageNet results and SoTA data-
efficiency results.

Faster convergence and low sensitivity to data
augmentations.

Easy to generalize to other applications.
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Resources cuMmmit

Main paper, AAAI’'22 Oral Reference

PDF Vision Transformer
https://arxiv.org/pdf/2105.12723.pdf https://arxiv.org/pdf/2010.11929.pdf

Github (code+pretrained models) Training data-efficient image transformers & distillation

through attention
https://arxiv.org/pdf/2012.12877.pdf

https://github.com/google-research/nested-transformer

Blog post

https://ai.googleblog.com/2022/02/nested-
hierarchical-transformer-towards.html

Improved Transformer for High-Resolution GANs

https://arxiv.org/pdf/2106.07631.pdf
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