embedded VISION sumnt

Nested Hierarchical Transformer: Towards Accurate, Data-Efficient and Interpretable Visual Understanding

Zizhao Zhang Staff Research Software Engineer, Tech Lead Cloud AI Research, Google

Convolutional Neural Networks for Image Recognition

Samoyed (16); Papillon (5.7); Pomeranian (2.7); Arctic fox (1.0); Eskimo dog (0.6); white wolf (0.4); Siberian husky (0.4)

Convolution with **Pooling** generates **feature maps**

Google Research

© 2022 Google

embedded VISION

summit

2

Vision Transformer (ViT)

Google Research

embedded

VISION

Vision Transformer (ViT)

Self-attention with tokenized patches generates sequence features

Figure source: https://ai.googleblog.com/2020/12/transformers-for-image-recognition-at.html

Google Research

© 2022 Google

Advantages

- Easy to scaleup (billions of params).
- Unifies language and vision.

Scale better with larger image pre-training

Total pre-training compute [exaFLOPs] VIT yields a good performance/compute trade-off.

Figure source: <u>https://ai.googleblog.com/2020/12/transformers-for-image-recognition-at.html</u>

Ways to Improve

- **Data efficiency**: ViT usually underperforms ConvNets when given a smaller amount of data.
- **Expensive computation**: Learning self-attention cross all pixels/patches is expensive with long sequences.
- **Interpretability**: The interpretability of ViT is under-discovered.

- New concept with simple implementation (**10+** lines of code).
- Improve ViT ImageNet benchmark from 81.8% -> 83.8% (20% reduced params).
- **State-of-the-art** on data efficiency experiments.
- **Interpretable** tree-like structure.
- Speed up training convergence by **3 8 times**.

Aggregating Nested Transformer (NesT)

Aggregating Nested Transformer (NesT)

- Achieving non-local communication via the proposed **aggregation function**.
- Decouple local feature learning and global feature communication processes.
- It resembles **decision tree-like structure** that offers interpretation benefits.
- Easy to implement.

embedded

VISION

NesT Pseudo-code

6

8

Blocking image to

patches [6, 7, 8, 9, ...]

6

embedded

VISION

Aggregation Functions: Design Matters!

- Block aggregation reduces the spatial size by 2x2.
- **Small kernels** on **image plane** is important.

embedded VISION

ImageNet benchmark

Arch. base	Method	#Params	Top-1 acc. (%)
Convolutional	ResNet-50 RegNetY-4G RegNetY-16G	25M 21M 84M	76.2 80.0 82.9
Transformer full-attention	ViT-B/16 DeiT-S DeiT-B	86M 22M 86M	77.9 79.8 81.8
Transformer local-attention	Swin-T Swin-S Swin-B	29M 50M 88M	81.3 83.0 83.3
	NesT-T NesT-S NesT-B	17M 38M 68M	81.5 83.3 83.8

Three different sizes: T: Tiny, S: Small, B: Base

ImageNet benchmark with ImageNet-22K pre-training

	ViT-B/16	Swin-B	Nest-B
ImageNet Acc. (%)	84.0	86.0	86.2

Note: **DeiT** is **ViT** trained with strong data augmentations (which are used by most following papers). In rest of presentation, we mostly compare with DeiT.

DeiT: <u>Training data-efficient image transformers & distillation</u> <u>through attention</u>, ICML2021

Google Research

Convergence and Effects of Data Augmentation

NesT uses less training time to reach similar performance.

Augmentation Removed	ImageNet Accuracy (%)		
	DeiT-B	NesT-T	
None	81.8	81.5	
RandomErasing	4.3	81.4	
RandAugment	79.6	81.2	
CutMix&MixUp	75.8	79.8	

NesT is much more robust to data augmentation ablations.

Google Research

embedded

VISION

Data Efficiency Experiments: CIFAR Results

CIFAR10/100 datasets have 60k images with 32x32 resolution.

Arch. base	Method	C10 (%)	C100 (%)
Convolutional	Pyramid-164-48	95.97	80.70
	WRN28-10	95.83	80.75
Transformer full-attention	DeiT-T	88.39	67.52
	DeiT-S	92.44	69.78
	DeiT-B	92.41	70.49
	PVT-T	90.51	69.62
	PVT-S	92.34	69.79
	PVT-B	85.05^{\star}	43.78^{\star}
	CCT-7/3×1	94.72	76.67
Transformer local-attention	Swin-T	94.46	78.07
	Swin-S	94.17	77.01
	Swin-B	94.55	78.45
	NesT-T	96.04	78.69
	NesT-S	96.97	81.70
	NesT-B	97.20	82.56

PVT: Pyramid vision transformer, Wang et al., ICCV2021

CCT: Escaping the Big Data Paradigm with Compact Transformers, Hassani el al., Arxiv, 2021

embedded VISION

"Deep neural networks usually do not explain their predictions, which is a barrier to their adoption in the real world."

Interpretability of NesT

embedded VISION summit

- **Tree Traversal** to locate the class-aware decision path.
- Class Activation Map (CAM) to locate objects.

GradCAT: Interpretability via Tree Traversal

- Each node only processes information over corresponding regions.
- Block aggregation combines information of adjacent nodes.
- It resumes a decision tree-like structure that naturally has interpretability benefits.

embedded

VISION

GradCAT: Interpretability Visualization

embedded

VISION summit

GradCAT: Interpretability Visualization

Given the left input image (containing four animals), the figure visualizes the top-4 class traversal results (4 colors) using an ImageNet-trained NesT (with three tree hierarchies). Each tree node denotes the averaged activation value.

embedded VISION

Gradient-based Class-aware Tree-traversal (GradCAT)

embedded VISION

GradCAT Results on ImageNet

embedded

VISION summit

GradCAT Results on ImageNet

embedded

VISION summit

Class Activation Map (CAM) Visual Object Attention

Figure 2. Class Activation Mapping: the predicted class score is mapped back to the previous convolutional layer to generate the class activation maps (CAMs). The CAM highlights the class-specific discriminative regions.

Learning Deep Features for Discriminative Localization, Zhou et al. **CVPR2016**

embedded VISION

Qualitative Comparison Results

NesT CAM

Google Research

embedded

VISION summit

Apply NesT to Image Generation

- Replace **Block Aggregation** with **Block De-aggregation**.
- Use **Pixel Shuffle** to achieve deaggregation (i.e., upsampling).

Pixel Shuffle: <u>Real-Time Single Image and Video Super-Resolution Using an</u> <u>Efficient Sub-Pixel Convolutional Neural Network</u>, Shi et al., **CVPR2016**

٠

embedded VISION

Image Generation on ImageNet

 Transposed NesT firstly demonstrates ViT-based architecture can achieve faster convergence than ConvNet-based architecture for image generation.

NN: Nearest neighbor

• See Improved Transformer for High-Resolution GANs, NeurIPS2021, for extended work on this task.

embedded

VISION

Conclusion

- A novel architecture that simplifies previous designs via the proposed aggregation function.
- A new interpretability method that make NesT interpretable by tree traversal.
- Competitive ImageNet results and SoTA dataefficiency results.
- Faster convergence and low sensitivity to data augmentations.
- Easy to generalize to other applications.

embedded

VISION

Resources

Main paper, AAAI'22 Oral

PDF

https://arxiv.org/pdf/2105.12723.pdf

Github (code+pretrained models)

https://github.com/google-research/nested-transformer

Blog post

https://ai.googleblog.com/2022/02/nestedhierarchical-transformer-towards.html

Reference

Vision Transformer

https://arxiv.org/pdf/2010.11929.pdf

Training data-efficient image transformers & distillation through attention

https://arxiv.org/pdf/2012.12877.pdf

Improved Transformer for High-Resolution GANs

https://arxiv.org/pdf/2106.07631.pdf