
Compound CNNs For 
Improved Classification 
Accuracy

Presenter: Spyros Tragoudas*

Joint work with: Vasileios Pentsos*, Bijay Raj Paudel*, Kiriti

Nagesh Gowda†, Mike Schmit†

*School of Electrical, Computer and Biomedical Engineering, Southern Illinois 

University, Carbondale, IL
†ML Computer Vision Group, Advanced Micro Devices, Inc. Santa Clara, CA



Overview

• Introduction 

• The proposed mechanism

• The architecture and justification

• Example cases

• Experimental results

• Conclusion

2
© 2022 Southern Illinois University Carbondale



• Observation: A CNN cannot classify with equal accuracy across all classes it is trained on

Introduction
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• Observation: Improved accuracy with CNN that focus on classes sharing similar features

Example case - network trained on classes “cats” and “dogs” on Cifar-10, 1000 images per class, original network VGG16:
- Reduced “dog” misclassification 110 to 74 
- Reduced “cat” misclassification 130 to 3
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Contribution

• A method to improve the accuracy of a Convolutional Neural Network (CNN) by adding shallow CNNs 

without increasing the inference time.

• Can be used on any already trained CNN, regardless of its complexity or accuracy.

• Does not require retraining of the original CNN or customizing datasets.

Novelty

• Improve classification accuracy for classes where the input CNN underperforms.

• Shallow CNNs per class that operate concurrently, reduce the number of false positives for the class, and 

may defer classification to the input CNN.

Introduction
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CNNs for low accuracy classes

• Automated method to select classes using the confusion matrix Mij of the original input CNN, which has been 
trained on all classes.

• Shallow CNN for each such class i (anchor) also consider other classes (supporting) using threshold θ.

Example: Confusion Matrix of Resnet18 on CIFAR10, with θ = 12
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Classes in the swallow CNN for row j
Green cells: Correctly classifications of class j
Light green cells (supporting classes of j): Misclassifications of 
class j that exceed θ
White cells: Misclassifications of class j below θ

The union of the red and the green cells defines a set of selected
classes in a swallow CNN for i

For instance, the set of selected classes for class "3" is {3, 4, 5, 6}

Predicted class i

True 
class j
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The proposed mechanism

A pair of shallow CNNs for each low accuracy class: A classification network Ni and a filter network Fi 

• 1st level - Filters Fi are binary networks operating in parallel, assuming a multi-processor device.

• If input is predicted by Fi to be anchor class i it is directed to Ni, else to the original input CNN

• 2nd level - Classification networks Ni. Available predictions:

• The anchor class i

• One of the supporting classes

• The “other” class

Enabled Ni are also fired in parallel. Final class prediction by module Argmax

is the one with the highest probability.
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Anchor class Supporting 

classes

Classes that 

form class 

“other”

3 4,5,6 0,1,2,7,8,9

Example: Cifar-10 with Resnet-18
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The schematic of the proposed mechanism

• 3rd level - The original input CNN that is enabled only when all Fi predictions are negative or when 

prediction of an Ni is “other”
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• Rectangles: Represent CNNs.

• Fi and Ni are shallow CNN with inference time 

less than that of the input CNN.

• Diamonds: Represent Binary Decision logic 

modules.

• NOR gates and the Argmax module that have 

negligible inference time.
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Fi network architecture
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• Fi networks are shallow by design, 
with only 2 Convolutional layers

• In contrast, the input CNNs VGG16 
and ResNet-18 have 13 and 
16 convolutional layers respectively

• Each Fi classifies the input as 
belonging to a certain low-accuracy 
class or not

Fi network architecture
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Ni network architecture
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• Ni networks are also shallow by 
design, with only 2 Convolutional 
layers

• In contrast, the input CNNs 
VGG16 and ResNet-18 have 13 
and 16 convolutional layers 
respectively

• Each Ni has three possible outputs

• The computational complexity (in 
number of trainable parameters) of 
each Fi - Ni pair is 69.1% -
91.3% lower than the input 
CNNs

Ni classification network architecture
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• The Fi networks at the 1st level are designed to isolate each low-accuracy class from the total 
dataset

• However, the false positives affect the accuracy at the 1st level

• The Ni networks at the 2nd level are designed to distinguish among a low-accuracy class and its 
most frequent false positive classes

• Ni trained to handle a specific subset of the dataset which share similar features, not the whole 
dataset

• The input CNN on the 3rd level acts as a safety-net for those cases that fooled Fi and Ni handling 
the classes as well

Justification of the proposed structure
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Illustration

Input architecture CNN ResNet-18 and dataset CIFAR-100

Class 11 is “boy” and class 35 is “girl”.

• For an input with true class 11, filters F11 and F35 both predicted positive (“YES”).

• They enabled their respective classification networks N11 and N35.

• N11 predicted class “boy” with probability of 64.2 % and N35 predicted class “girl” with probability 36.1 %.

• Final prediction by module Argmax was class “boy”.
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True class Class Filter Fi

prediction

Ni prediction Ni probability 

(%)

boy

boy yes boy 64.2

girl yes girl 36.1
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Illustration

Input architecture CNN is VGG16 and dataset CIFAR-100 

Class 11 is “boy”, class 35 is “girl”, and class 98 is “woman”.

• For an input with true class 11, F11 , F35 and F98 predicted positive (“YES”) and enabled N11, N35 and N98. 

• Network N11 predicted “other” with probability of 72.8 %. 

• Network N35 predicted class 35 with probability 54.5 %.

• Network N98 predicted the class 98 with probability 48.6 %. 

• Module Argmax chose class “other” and the image is directed to the input CNN that predicted class 11.
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True class Class Fi prediction Ni prediction Ni probability 

(%)

Input CNN 

prediction

Man

boy yes other 72.8

mangirl yes girl 54.5

woman yes woman 48.6

© 2022 Southern Illinois University Carbondale



Results – classification accuracy
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• Max possible gain in accuracy (%)  
Gain in the accuracy of the selected classes, if all instances of the selected classes were 
correctly classified
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Results – overall classification accuracy improvement
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• Presented approach performed well on datasets with relatively small number of classes

• The accuracy of the original CNN:  Achieved accuracy (5th column) - Gain in accuracy (3rd column)
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Results – inference overhead
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• All Fi and Ni networks run in parallel. Approach was implemented with PyTorch.

• Time improvement: Many inputs were classified at the 2nd level instead of the 3rd level (by the input CNN).

• Approach suitable for real-time operations
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Conclusion

• A methodology that augments an existing Convolutional Neural Network to improving its 

classification accuracy for certain classes where it underperforms

• These classes were identified from the confusion matrix of the input CNN

• The proposed structure consists of cascading shallow CNNs, which precede the input CNN, and 

operate concurrently to minimize the overhead

• Experimental results show significant increase in classification accuracy without increasing 

inference time
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