embedded VISION summt

Compound CNNs For Improved Classification Accuracy

Presenter: Spyros Tragoudas^{*} Joint work with: Vasileios Pentsos^{*}, Bijay Raj Paudel^{*}, Kiriti Nagesh Gowda⁺, Mike Schmit⁺

*School of Electrical, Computer and Biomedical Engineering, Southern Illinois University, Carbondale, IL *ML Computer Vision Group, Advanced Micro Devices, Inc. Santa Clara, CA

Overview

embedded VISION summit

- Introduction
- The proposed mechanism
- The architecture and justification
- Example cases
- Experimental results
- Conclusion

Introduction

Southern AMD

Jniversity

• **Observation**: A CNN cannot classify with equal accuracy across all classes it is trained on

FOF CEAR DATASETS.					
dataset	# of classes	ofinput# of classes belowlassesnetwork20% percentile		# of conv. layers	
CIFAR-10	10	ResNet-18 VGG16	2 2	16 13	
CIFAR-100	100	ResNet-18 VGG16	25 22	16 13	
Tiny- ImageNet	200	ResNet-18 VGG16	36 48	16 13	
MNIST	10	ResNet-18 VGG16	2 1	16 13	

TABLE I CLASSIFICATION ACCURACY OF ESTABLISHED ARCHITECTURES ON POPULAR DATASETS.

- Observation: Improved accuracy with CNN that focus on classes sharing similar features
 - Example case network trained on classes "cats" and "dogs" on Cifar-10, 1000 images per class, original network VGG16:
 - Reduced "dog" misclassification 110 to 74
 - Reduced "cat" misclassification 130 to 3

Introduction

Contribution

- A method to improve the accuracy of a Convolutional Neural Network (CNN) by adding shallow CNNs without increasing the inference time.
- Can be used on any already trained CNN, regardless of its complexity or accuracy.
- Does not require retraining of the original CNN or customizing datasets.

Novelty

- Improve classification accuracy for classes where the input CNN underperforms.
- Shallow CNNs per class that operate concurrently, reduce the number of false positives for the class, and may defer classification to the input CNN.

CNNs for low accuracy classes

- Automated method to select classes using the confusion matrix M_{ii} of the original input CNN, which has been • trained on all classes.
- Shallow CNN for each such class *i* (anchor) also consider other classes (supporting) using threshold θ . ۲

Example: Confusion Matrix of Resnet18 on CIFAR10, with $\theta = 12$

Southern AMD

Jniversity CARBONDALE

Predicted class *i*

Classes in the swallow CNN for row *j*

Green cells: Correctly classifications of class *j* Light green cells (supporting classes of *j*): Misclassifications of class *i* that exceed θ <u>White cells</u>: Misclassifications of class *j* below θ

The *union* of the red and the green cells defines a *set of selected* classes in a swallow CNN for *i*

For instance, the set of selected classes for class "3" is {3, 4, 5, 6}

embedded

VISION

The proposed mechanism

A pair of shallow CNNs for each low accuracy class: A classification network N_i and a filter network F_i

- **<u>1</u>st level** Filters F_i are binary networks operating in parallel, assuming a multi-processor device.
 - If input is predicted by F_i to be anchor class *i* it is directed to N_i , else to the original input CNN
- <u>**2nd level**</u> Classification networks N_i. Available predictions:
 - The anchor class *i*
 - One of the supporting classes
 - The "other" class

Example: Cifar-10 with Resnet-18

Anchor class	Supporting classes	Classes that form class "other"
3	4,5,6	0,1,2,7,8,9

Enabled N_i are also fired *in parallel*. Final class prediction by module Argmax

is the one with the *highest probability*.

embedded VISION

The schematic of the proposed mechanism

• **3rd level** - The original input CNN that is enabled only when all F_i predictions are negative or when prediction of an N_i is "other"

- **Rectangles:** Represent CNNs.
 - F_i and N_i are shallow CNN with inference time less than that of the input CNN.
- **Diamonds:** Represent Binary Decision logic modules.
 - NOR gates and the Argmax module that have negligible inference time.

embedded VISION

F_i network architecture

University CARBONDALE

- F_i networks are shallow by design, • with only 2 Convolutional layers
- In contrast, the input CNNs VGG16 • and ResNet-18 have 13 and 16 convolutional layers respectively
- Each F_i classifies the input as • belonging to a certain low-accuracy class or not

embedded

VISION

N_i network architecture

- N_i networks are also shallow by design, with only 2 Convolutional layers
- In contrast, the input CNNs VGG16 and ResNet-18 have 13 and 16 convolutional layers respectively
- Each N_i has three possible outputs
- The computational complexity (in number of trainable parameters) of each F_i N_i pair is 69.1% 91.3% lower than the input CNNs

N_i classification network architecture

embedded

VISION

Justification of the proposed structure

- The F_i networks at the 1st level are designed to isolate each low-accuracy class from the total dataset
- However, the false positives affect the accuracy at the 1st level
- The N_i networks at the 2nd level are designed to distinguish among a low-accuracy class and its most frequent false positive classes
- N_i trained to handle a specific subset of the dataset which share similar features, not the whole dataset
- The input CNN on the 3rd level acts as a safety-net for those cases that fooled F_i and N_i handling the classes as well

embedded

summi

VISIO

Input architecture CNN ResNet-18 and dataset CIFAR-100

Class 11 is "boy" and class 35 is "girl".

- For an input with true class 11, filters F11 and F35 both predicted positive ("YES").
- They enabled their respective classification networks N11 and N35.
- N11 predicted class "boy" with probability of 64.2 % and N35 predicted class "girl" with probability 36.1 %.

True class	Class	Filter F _i prediction	N _i prediction	N _i probability (%)
	boy	yes	boy	64.2
bUy	girl	yes	girl	36.1

• Final prediction by module Argmax was class "boy".

Illustration

Input architecture CNN is VGG16 and dataset CIFAR-100

Class 11 is "boy", class 35 is "girl", and class 98 is "woman".

- For an input with true class 11, F11, F35 and F98 predicted positive ("YES") and enabled N11, N35 and N98.
- Network N11 predicted "other" with probability of 72.8 %.
- Network N35 predicted class 35 with probability 54.5 %.
- Network N98 predicted the class 98 with probability 48.6 %.

True class	Class	F _i prediction	N _i prediction	N _i probability (%)	Input CNN prediction
	boy	yes	other	72.8	
Man	girl	yes	girl	54.5	man
	woman	yes	woman	48.6	

• Module Argmax chose class "other" and the image is directed to the input CNN that predicted class 11.

TABLE II ACCURACY IMPROVEMENT ON THE SELECTED CLASSES OF THE INPUT CNN.

dataset	# of classes	input network	<pre># of selected classes</pre>	selected classes (%)	gain in accuracy (%)	max possible gain in accuracy (%)	efficiency (%)
CIFAR-10	10	ResNet-18 VGG16	2 2	100 100	4.785 4.012	7.527 9.027	63.57 44.44
CIFAR-100	100	ResNet-18 VGG16	7 4	28 18	11.667 7.104	66.667 118.579	17.50 6.00
Tiny- ImageNet	200	ResNet-18 VGG16	3 5	8.3 10.4	32.653 36.765	53.061 83.824	61.54 43.86
MNIST	10	ResNet-18 VGG16	2 1	100 100	0.135 0.561	0.757 1.478	17.78 37.93

efficiency = _______

max possible accuracy gain

• Max possible gain in accuracy (%) Gain in the accuracy of the selected classes, if all instances of the selected classes were correctly classified

• Selected classes (%)

the (%) percentage of selected classes over total number of the low accuracy classes

Results – overall classification accuracy improvement

dataset	input	gain in	max possible	achieved
	network	acc. (%)	gain in acc. (%)	acc. (%)
CIFAR-10	ResNet-18 VGG16	1.04	2.8 4.14	95.32 94.52
CIFAR-100	ResNet-18	0.29	0.8	66.14
	VGG16	0.36	2.17	62.57
Tiny-	ResNet-18	0.10	0.52	68.44
ImageNet	VGG16	0.24	1.14	57.54
MNIST	ResNet-18	0.04	0.45	99.35
	VGG16	0.08	0.29	99.21

TABLE III OVERALL ACCURACY IMPROVEMENT ON THE DATASETS

- Presented approach performed well on datasets with relatively small number of classes
- The accuracy of the original CNN: Achieved accuracy (5th column) Gain in accuracy (3rd column)

embedded

summit

VISIO

Results – inference overhead

TABLE IV INFERENCE OVERHEAD ON THE DATASETS

dataset	input	inference	inference time
	network	time (s)	increase (%)
CIFAR-10	ResNet-18	2.389	9.04
	VGG16	2.354	8.18
CIFAR-100	ResNet-18	1.622	-1.03
	VGG16	2.381	-1.93
Tiny-	ResNet-18	3.319	-0.19
ImageNet	VGG16	2.127	0.21
MNIST	ResNet-18	1.830	3.08
	VGG16	1.766	2.84

- All F_i and N_i networks run in parallel. Approach was implemented with PyTorch.
- Time improvement: Many inputs were classified at the 2nd level instead of the 3rd level (by the input CNN).
- Approach suitable for real-time operations

- A methodology that augments an existing Convolutional Neural Network to improving its classification accuracy for certain classes where it underperforms
- These classes were identified from the confusion matrix of the input CNN
- The proposed structure consists of cascading shallow CNNs, which precede the input CNN, and operate concurrently to minimize the overhead
- Experimental results show significant increase in classification accuracy without increasing inference time

Vasileios Pentsos, Bijay Raj Paudel, Spyros Tragoudas, Kiriti Nagesh Gowda, and Mike Schmit. "Improved CNN classification accuracy with the addition of shallow cascading CNNs." In *2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)*, pp. 988-991. IEEE, 2021.

