embedded VISION sumnt

Knowledge Distillation of Convolutional Neural Networks

Federico Perazzi Head of AI Bending Spoons

Learning Complex Representation

- Neural networks are very effective at learning complex representation from data.
- Successful at discriminative tasks such as classification, detection, segmentation.
- Successful at generative tasks such as image translation.

Source: Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

embedded VISION

The Learning Capabilities Come at a Price....

• The complexity and the size of the model often translate to better performance.

embedded

VISION

The Learning Capabilities Comes at a Price....

Neural Networks

- Consume a lot of memory and power.
- Significant computational costs.
- \rightarrow Must be optimized for deployment
- Cloud Computing \rightarrow minimize the infrastructure costs and the carbon footprint.
- Edge Devices → computational demand must not exceed strict hardware limitations.

embedded VISION

Model Compression

- Set of techniques to reduce the complexity of a neural networks → while minimizing the loss in accuracy
- Quantization
- Weights Pruning
- Knowledge Distillation
- Conversion to high performance libraries

\rightarrow 50x speed-up on classification models without loss of quality

MODEL COMPRESSION

embedded

VISION

Knowledge Distillation

 \rightarrow The process of transferring knowledge from a large <u>model</u> to a smaller one that is more suitable for deployment.

 \rightarrow Use a fast and compact model to approximate the function learned by a slower, larger, but better performing model.

embedded

VISION

Steps to Distill a Model

- Prepare the dataset
- Define student and teacher models
- Train the teacher
- Distill teacher to student
- Train student from scratch for comparison

https://keras.io/examples/vision/knowledge_distillation/

embedded VISION

Prepare the Dataset

Classification Dataset

Define the Teacher and Student Model

Classification Dataset

embedded

Define the Teacher and Student Model

Classification Dataset

embedded

Define the Teacher and Student Nodel

Classification Dataset

embedded

Training the Teacher

Classification Dataset

Training the Teacher

Classification Dataset

- Cross-entropy loss: $H(p, \hat{p})$
- Ground-truth and predicted probabilities p, \hat{p}

Distill Teacher to Student

→ Soft labels are both supervisory signals and regularizers → serves as a good regularization to the student network

BENDING SPOONS

Heated Softmax

• **Higher temperature T**, produces a softer probability distribution over classes.

$$q_i = \frac{exp(z_i/T)}{\sum_j exp(z_j/T)}$$

embedded

VISION

Distill Teacher to Student

BENDING SP®INS

embedded

Distill teacher to student

BENDING SPOONS

embedded

VISION

Distill teacher to student

BENDING SPOONS

embedded

 \rightarrow Models are trained to optimize performance on the training data when the real objective is to generalize well to new data.

 \rightarrow We can train the small model to generalize in the same way as the large model.

System & training set	Train Frame Accuracy	Test Frame Accuracy
Baseline (100% of training set)	63.4%	58.9%
Baseline (3% of training set)	67.3%	44.5%
Soft Targets (3% of training set)	65.4%	57.0%

Matching Logits is a Special Case of Distillation

cross-entropy gradient

$$\frac{\partial C}{\partial z_i} = \frac{1}{T} \left(q_i - p_i \right) = \frac{1}{T} \left(\frac{e^{z_i/T}}{\sum_j e^{z_j/T}} - \frac{e^{v_i/T}}{\sum_j e^{v_j/T}} \right)$$

temperature is high compared with the magnitude of the logits

$$\frac{\partial C}{\partial z_i} \approx \frac{1}{T} \left(\frac{1 + z_i/T}{N + \sum_j z_j/T} - \frac{1 + v_i/T}{N + \sum_j v_j/T} \right)$$

logits are normalized to zero-mean $\sum_j z_j = \sum_j v_j = 0$

$$\frac{\partial C}{\partial z_i} \approx \frac{1}{NT^2} \left(z_i - v_i \right)$$

embedded

VISION

Beyond Classification

- Dense prediction tasks → produce pixel-level prediction.
- Labels are dense and continuous, unlike one-hot vector like classification.
- \rightarrow Is knowledge distillation still effective on these tasks?
- Yes \rightarrow match the activations instead of the logits.

embedded VISION

Knowledge Distillation for Dense Predictions

BENDING SP®INS

embedded

Knowledge Distillation for Dense Predictions

convolution

embedded

Case Study - Remini Photo Enhancer

.ul 穼 🗖

<u>+</u>

After

embedded

Remini Network Architecture

- Feature Extractor → embed RGB data into high-resolution features.
- Context Extractor → encapsulate global contextual information such as facial symmetry.
- Enhancer → Use highresolution features and global information to restore the image quality.

embedded

VISION

Remini Distillation Procedure

- **Distillation** → train feature encoder, contextual extractor, enhancer progressively
 - **L1 Loss** \rightarrow MSE loss between the outputs of the two networks
 - **Distillation Loss** \rightarrow MSE Loss between the teacher activations and the projection of the student's activations
- **Perceptual Training**: we fine-tune the model end-to-end by comparing the output of the student to that of the teacher
 - **MSE Loss**: same as above
 - **Perceptual Loss** \rightarrow VGG losses between the output image of the two models
- **Student Fine-tuning**: fine-tuned model using the ground truth images as target

Qualitative Results

Input

Teacher

Student

Qualitative Results

Input

Teacher

Student

Reconstruction Quality

- Tested different blocks for the projection into matching feature spaces
 - Trained 10k iterations distilling into a 0.5x model
- **PSNR** measures the numerical similarity between two images
 - Not suited for perceptual losses
- LPIPS measure the **perceptual similarity**

Layersa	PSNR	LPIPS
1x1 convs	30.3	0.32
3x3 convs	31.6	0.31
1x1 conv + Leaky ReLU	31.4	0.31
1x1 conv + sine activation	30.1	0.34

embedded VISION

Runtime Performance

- Scale factor reduction of channels in each convolutional block
 - Achieve 3x speedup halving the width of the neural network

Channels scale factor	Convolutions type	Encoder Inference time [s]	Extractor inference time [s]	Enhancer inference time [s]
1x	Regular	0.017	0.014	0.415
0.5x	Regular	0.006	0.005	0.113
2x	Regular	0.063	0.053	1.704
1x	DWS	0.016	0.013	0.154

Results - User A/B Testing

Retention

Significant experiment!
Significant segments, number of sigmas and bounds:
{'1 - Base Model,2 - Base Model
Distilled': (4.208482309156419, 1.0079770983686298, 1.0183051836695876)}

BENDING SPOONS

© 2022 Bending Spoons

embedded

VISION

Thank you

.

Distillation

- "Model Compression" <u>https://dl.acm.org/doi/10.1145/1150402.1150464</u>
- "Distilling the knowledge in a neural network" <u>https://arxiv.org/abs/1503.02531</u>
- "Knowledge Distillation A Survey" <u>https://arxiv.org/pdf/2006.05525.pdf</u>

Bending Spoons

- Remini: <u>https://apps.apple.com/us/app/remini-ai-photo-enhancer/id1470373330</u>
- Careers <u>https://bendingspoons.com/careers.html</u>