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Learning Complex Representation VISION

* Neural networks are very effective at learning complex representation from data.
« Successful at discriminative tasks such as classification, detection, segmentation.

« Successful at generative tasks such as image translation.

Classification
+ Localization

Classification

-y

Photograph Monet Van Gogh Cezanne Ukiyo-e

Source: Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Netwarks
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The Learning Capabilities Come at a Price....

« The complexity and the size of the model often
translate to better performance.
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The Learning Capabilities Comes at a Price.... ;/J%Crhll\lt

Neural Networks
« Consume a lot of memory and power.
 Significant computational costs.

- Must be optimized for deployment

« Cloud Computing — minimize the infrastructure
costs and the carbon footprint.

« Edge Devices — computational demand must not
exceed strict hardware limitations.
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Model Compression MRy

« Set of techniques to reduce the complexity of a
neural networks — while minimizing the loss in

accuracy /V\ OD EL COM PRESSION

* Quantization MOPEL
: : ] | —
«  Weights Prunin VL
9 9 W/ ——
- Knowledge Distillation MoDEL Mo DEL
: : : : [ 71| QUANTIZATIV I_.* ‘
« Conversion to high performance libraries — 2 — |
¢ sy, =
2, 47, | MoDEL
- 50x speed-up on classification models v\ .
without loss of quality :Ii
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Knowledge Distillation
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- The process of transferring knowledge from
a large model to a smaller one that is more

trained

logits

teacher

suitable for deployment.

- Use a fast and compact model to
approximate the function learned by a slower,
larger, but better performing model.
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https://en.wikipedia.org/wiki/Statistical_model
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logits
« Prepare the dataset
« Define student and teacher models trained ||| | .
_ teacher g s
 Distill teacher to student
_ _ Distillation Loss
« Train student from scratch for comparison logits
https://keras.io/examples/vision/knowledge _distillation/ |_| ]
to be trained | [
student 1T .
™ os
probabilities
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Classification Dataset
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Define the Teacher and Student Model VISION §
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Define the Teacher and Student Model gﬁ%l%\l

Output Soft
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Define the Teacher and Student Nodel gﬁ%l%\l

- sigmoid
Output Softmax
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Training the Teacher

Classification Dataset
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Training the Teacher
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Classification Dataset
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—> CE Loss (—

probabilities hard labels

H(p, ) Z pi log p

« Cross-entropy loss: H(p, D)
« Ground-truth and predicted probabilities p, p
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Distill Teacher to Student
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- Soft labels are both supervisory
signals and regularizers — serves as a
good regularization to the student network
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Heated Softmax VISION
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« Higher temperature T, produces egjp( 2 /T)
a softer probability distribution over (; = <= T
classes. ZJ explzj/T)
' > >
T =1 T =5 T =10
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Distill Teacher to Student
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Distill teacher to student
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Distill teacher to student
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- Models are trained to optimize performance on the training data when the real objective is to

generalize well to new data.

- We can train the small model to generalize in the same way as the large model.

System & training set

Train Frame Accuracy

Test Frame Accuracy

Baseline (100% of training set) 63.4% 58.9%
Baseline (3% of training set) 67.3% 44.5%
Soft Targets (3% of training set) 65.4% 57.0%
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Matching Logits is a Special Case of Distillation VISION B
logits
cross-entropy gradient
> teacher — > oC B l( ) = l ezi/T B evi/T
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Beyond Classification MRy

« Dense prediction tasks - produce pixel-level prediction.

« Labels are dense and continuous, unlike one-hot vector like
classification.

« — Is knowledge distillation still effective on these tasks?

« Yes — match the activations instead of the logits.

Blurry

portraits °
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Knowledge Distillation for Dense Predictions
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Knowledge Distillation for Dense Predictions VISION §

teacher - - -

Distillation Loss

- Mean squared error
between activations

Y of the two networks

] Distillation Loss MSE Loss
v - * Requires embedding

v v into lower dimensional
space.

\

1x1
convolution
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Remini Network Architecture

 Feature Extractor — embed
RGB data into high-resolution
features.

- Context Extractor —
encapsulate global contextual
information such as facial
symmetry.

- Enhancer — Use high-
resolution features and global
information to restore the
image quality.
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Feature Encoder

Input Image
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Remini Distillation Procedure VISION

- Distillation — train feature encoder, contextual extractor, enhancer progressively
L1 Loss — MSE loss between the outputs of the two networks

 Distillation Loss — MSE Loss between the teacher activations and the projection of the
student’s activations

« Perceptual Training: we fine-tune the model end-to-end by comparing the output of the
student to that of the teacher

 MSE Loss: same as above
* Perceptual Loss — VGG losses between the output image of the two models

- Student Fine-tuning: fine-tuned model using the ground truth images as target
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Reconstruction Quality YIRION B

» Tested different blocks for the projection into matching feature spaces
» Trained 10k iterations distilling into a 0.5x model

 PSNR measures the numerical similarity between two images
» Not suited for perceptual losses

« LPIPS measure the perceptual similarity

Layersa PSNR LPIPS
1x1 convs 30.3 0.32
3x3 convs 31.6 0.31
1x1 conv + Leaky RelLU 31.4 0.31
1x1 conv + sine activation | 30.1 0.34
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Runtime Performance

Scale factor - reduction of channels in each convolutional block

 Achieve 3x speedup halving the width of the neural network

Channels scale
factor

Convolutions type

Encoder
Inference time [s]

Extractor
inference time [s]

Enhancer
inference time [s]

1x Regular 0.017 0.014 0.415
0.5x Regular 0.006 0.005 0.113
2X Regular 0.063 0.053 1.704
1x DWS 0.016 0.013 0.154
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Results - User A/B Testing VISION

Retention
App = Remini, EndDate = 2022-01-23, StartDate = 2022-01-17, ActionsEndDate = 2022-01-23

GranularityInDays = 1, BundleVersion >= 202106366

1.5 ® 1 - Base Model

2 - Base Model
Distilled

1.4

1.3

Value

1.2

1.1

0 1 2 3 4 5

Time from origin - Granularity in Days 1

Significant experiment!
Significant segments, number of sigmas and bounds:
{'l - Base Model,2 - Base Model<br>Distilled': (4.208482309156419, 1.0079770983686298, 1.0183051836695876)}
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Resources VISION

Distillation

« “Model Compression” https://dl.acm.org/doi/10.1145/1150402.1150464
 "Distilling the knowledge in a neural network” https://arxiv.org/abs/1503.02531
« “Knowledge Distillation A Survey” https://arxiv.org/pdf/2006.05525.pdf

Bending Spoons
* Remini: https://apps.apple.com/us/app/remini-ai-photo-enhancer/id1470373330

« Careers https://bendingspoons.com/careers.html
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