embedded VISION summit

COVID-19 Safe Distancing Measures in Public Spaces with Edge AI

Ebi Jose, PhD Senior Systems Engineer Government Technology Agency of Singapore

Government Technology Agency of Singapore (GovTech)

- Is a statutory board of the Government of Singapore, under the Prime Minister's Office
- 5 Capability Centres, conducting 3 key activities

embedded

VISION

Introduction

- Whether it's indoor environments (supermarkets, museums, etc.) or outdoors (parks), crowd management is a priority.
- By combining edge AI solutions with cloud connectivity, government agencies are equipped with information they need to manage the crowd effectively.
- Crowd counting deployments on the edge in **indoor** & **outdoor** environments are presented.

Indoors – Supermarkets, offices, museums

Key Approach in Indoor & Outdoor Visitor Counts

- Current state-of-the-art methods treat crowd counting as:
 - Detection-and-counting approach
 - Density map estimation
 - Where a deep neural network first produces a 2D crowd density map for a given input image, and...
 - ...estimates total size of the crowd by summing the density values across all spatial locations of the density map.
- For large crowds, the density map estimation approach is more robust than the detection-then-counting approach
 - as it is less sensitive to occlusion and clutter.
 - does not need to commit to binarized decisions at an early stage.

embedded

VISION

People Counting in Indoor Environments - Hardware

Nvidia Jetson Nano Dev Kit

Aaeon BOXER-8223AI NVIDIA Jetson Nano

One edge device can process up to 2 cameras.

5

embedded

VISION

People Counting in Indoor Environments - Software

			-				_	
		Version 1				Version	2	
Model		SSD-Mobilenet v2				PeopleNe	t	
Pre-trained dataset		MS-COCO			Nvidia Pr	Nvidia Proprietary		
Initial Object Classes		80				3		
Object class after transfer learning		1 (i.e. person)				1 (i.e. pe	rson)	
Model optimization		TensorRT (FP16)				TensorRT	TensorRT (FP16)	
DeepStream		No				Yes	Yes	
Tracking		Simple Online and Realtime Tracking (SORT) https://github.com/abewley/sort) NvDCF tr	NvDCF tracker	
Accuracy		86%				91%	91%	
Software Version	Mod	lel	TensorRT	FPS	CPU Usage	GPU Usage	RAM Usage (Gb)	
Version 1	SSD Mobilenet v2		No	17	49% (avg.)	70% (avg.)	2.9 / 4.0	
	SSD Mobilenet v2		Yes	23	35% (avg.)	50% (avg.)	2.7 / 4.0	
Version 2	Nvidia PeopleNet		Yes	25	40% (avg.)	50% (avg.)	2.7 / 4.0	

embedded

People Counting Indoors

- Transfer learning with custom dataset can achieve detection accuracy > 91%.
- (Almost) a solved problem!

embedded

Crowd Counting in Outdoor Environments

.

Crowd Counting in Outdoors

- A challenging computer vision problem due to:
 - Heavy occlusion
 - Perspective distortion
 - Scale variation
 - Diverse crowd distribution

embedded

Crowd Density Methods – MSFANet & DM-Count

- Crowd counting algorithms predict a density map from a crowd image. Summation of the density map is the crowd count.
- Each training image contains multiple people, each person is annotated by a dot.
- MSFANet crowd counting method
 - Combination of multi-scale-aware modules and dual path decoder
 - Predicts density maps and attention maps for highlighting crowd regions in input image.
 - Uses a Gaussian kernel to smooth each annotated dot.
 - Is trained on L2 pixel-wise loss.
 - Sensitive to the choice of variance in the Gaussian kernel.
- DM-Count crowd counting method
 - Considers density maps and dot maps as probability distributions.
 - Loss composed of optimal transport (OT) loss, total variation (TV) pixel-wise loss & counting loss (CL).

embedded

VISION

Multi-Scale Feature Adaptive Network (M-SFANet) – Data Preprocessing

Convolve the head annotation with Gaussian kernel (G) which has fixed standard deviation (σ).

Assuming a head annotation at pixel x_i , represented as $\delta(x - x_i)$,

density map,
$$D(x) = \sum_{i=1}^{N} \delta(x - x_i) * G_{\sigma}(x)$$

where N =total number of headcounts.

attention map,
$$A(i) = \begin{cases} 0 = 0.001 > D(i) \\ 1 = 0.001 \le D(i) \end{cases}$$

embedded

summit

VISIO

M-SFANet Architecture (1)

AGENCY OF SINGAPORE

embedded

M-SFANet Architecture (2)

AGENCY OF SINGAPORE

embedded

Crowd Counting in Outdoors – DM Count Estimation

Input Image

- Almost all previous work converts the sparse point annotation into dense ground truth maps.
 - Each point is replaced by a gaussian blob.
- DM-Count paper shows that imposing Gaussians to annotations hurts generalization performance.

Predicted Density Map

How to measure discrepancy for training?

embedded

VISION

summit

Annotations (Ground Truth Count = 54)

DM-Count Loss

embedded VISION summit

- DM-Count considers density map as distributions.
- Use of Optimal Transport (OT) to compute the distance between density maps.

Distribution distance

Total loss, $l(\mathbf{Y}, \widehat{\mathbf{Y}}) = l_C(\mathbf{Y}, \widehat{\mathbf{Y}}) + \lambda_1 l_{OT}(\mathbf{Y}, \widehat{\mathbf{Y}}) + \lambda_2 ||\mathbf{Y}||_1 l_{TV}(\mathbf{Y}, \widehat{\mathbf{Y}})$

- Counting loss (*l_C*): absolute loss between ground truth and predicted counts
- The Optimal Transport loss (l_{OT}) : The OT similarity measurements provide valid gradients that can train a network if the source distribution does not overlap with the target distribution.
- Total Variation loss (l_{TV}) : Improve stability when optimising the OT loss with the Sinkhorn algorithm.

Sparse annotations Target distribution

People Counting Outdoors - Workflow

embedded VISION summit

People Counting Outdoors - Cloud Backend and UI

Cloud Backend

User Interface

embedded

Crowd Counting Outdoors – Hardware & Software

AAEON Boxer-8253AI

- Nvidia Jetson Xavier NX
- 8GB LPDDR4x
- Storage option: 16GB eMMC and 64GB MicroSD
- GbE PoE/PSE LAN x 2
- Quectel EP06: LTE-A Cat 6 module with Mini PCIe form factor

Model	DM-Count	MSFANet
Dataset	UCF QNRF, Custom	UCF QNRF, Custom
Framework	Pytorch 1.2	Pytorch 1.2
Model optimization	TensorRT (FP16)	TensorRT (FP16)

Model	Accuracy (%)	Latency (sec)
DM-Count	92.10	3.467
M-SFANet	88.99	8.841

Pytorch Model on Nvidia Jetson Xavier NX

Model	Accuracy (%)	Latency (sec)
DM-Count	91.08	0.380
M-SFANet	86.46	0.637

TensorRT (FP-16) on Nvidia Jetson Xavier NX

embedded

VISION

Crowd Counting Outdoors – Results

Original Image

112 128 144 253.jpg Expected: 15 Predicted: 15 **Density Map**

96 112 128 144

96.jpg Expected: 26 Predicted: 27

Density Map

Superimposed Image

Superimposed Image

Crowd Counting in Outdoors – DM-Count Results

embedded

Summary

- Accurate people counting:
 - For indoor environments, is almost a solved problem, when there are less/no occlusions.
 - For outdoor environments, is a challenging problem due to:
 - Heavy occlusion
 - Perspective distortion
 - Scale variation
 - Diverse crowd distribution
 - DM-Count performed well even with occlusions, providing accurate counts.

Resources

embedded VISION summit

Sensors & IoT Department

https://www.tech.gov.sg/capability-centre-siot

Government Technology Agency of Singapore (GovTech)

https://www.tech.gov.sg

M-SFANet for Count Counting (original paper and code)

https://arxiv.org/abs/2003.05586

https://github.com/Pongpisit-Thanasutives/Variations-of-SFANet-for-Crowd-Counting

Distribution Matching for Count Counting (original paper and code)

https://arxiv.org/abs/2009.13077

https://github.com/cvlab-stonybrook/DM-Count

