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Perception on the Edge - 3D Vision

Applications of scalable 3D perception

➢ Model road object interactions (automotive & auto-insurance industry)

➢ Model interactions of human - robot co-working in warehouses

➢ Detect, track & model human motions across surveillance systems

➢ Query raw data for interactions for offline/off-board (edge) applications

Lidar 3D Object Detection Camera 3D Object Reconstruction Camera 3D Object Detection

Source: Alex Nasli

Source: Harishankar V

Common approaches used in 3D perception systems
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Shortcomings with the State-of-the-Art

Direct 3D Object Detection/Prediction 

➢ Object scale / depth prediction error 

Source: Ma et al 2021 [2]

Two-Stage 3D Object Detection (PseudoLidar)

➢ Computationally intensive process (large memory 
footprint)

➢ Smaller objects are often missed by depth prediction 
algorithms

Source: Qian et al 2020 [3]
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➢ Objects as spatio-temporal 3D points in birds eye view

➢ 2D object detection + depth prediction = 3D object points

➢ Track-able across video frames

➢ Computationally inexpensive ~10x faster than [5]

➢ No need for laborious & expensive 3D annotations

A Novel Object Representation 

Monocular Depth 
Prediction

Source: Adabins 2021 [1]

2D Object Detection
Source: robocademy
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Proposed Architecture

➢ Fu et al, Deep Layer Aggregation 2019 - 34 Layered Convnet with hierarchical aggregation
➢ Deformable Convolutional Networks 2017 - Dai et al 2017, deforming convolutions for 

enhancing transformations
➢ Tracklets: Short Track of object in 3D over a small number of frames

(Object coordinates  

in 3D)

Object Tracking
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Qualitative Results - Depth Prediction

DORN [4]Our PredictionsGround Truth DepthsInput Image

* At inference, monocular depth prediction can be computed using only the input frame and 
does not need the adjacent frames
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Qualitative Results - Overall

Our Depth PredictionsOur Object 
Detections

Input Image Ground Truth Depths

7



© 2022 Nemo @ Ridecell

Quantitative Results - Depth Prediction

Comparison of Monocular depth prediction results on KITTI dataset

Quantitative Results - Depth Prediction

Current state-

of-the-art

vs.

(Ours)
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Quantitative Results - Object Tracking

Comparison of Object Tracking results on KITTI dataset (D - Detection time)

MOTA: Multi-Object Tracking Accuracy

MOTP: Multi-Object Tracking Precision

MT: Most Tracked objects ratio (> 80% time)

ML: Most Lost objects ratio (< 20% time)

IDSW: Number of Identity Switch

FRAG: Track Fragmentation

Object 

Detections

(Bounding box 2D)

Object Tracking Sub-Module

Label Association 

Estimation

Tracked Objects (x, 

y, z)
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Qualitative Results - Object Interactions

Qualitative representation interactions; right between ego vehicle (blue) and an actor of 
interest (marked in red) - frames on left
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Conclusion & Future Work

➢ Novel 3D object representation for off-board applications.

➢ Objects as spatio-temporal 3D points

➢ Unified learning framework that is computationally 10x faster than SOTA

➢ Eliminates need for expensive 3D annotations and data collection setup

➢ Inexpensive & efficient direction for off-board perception applications

➢ Efficient for modeling object onteractions in 3D

➢ Replaceable network components – compatible for edge compute

➢ Model object interactions end-to-end – future work
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