embedded VISION sumnt

A Cost-Effective Approach to Modeling Object Interactions on the Edge

Arun CS Kumar Engineer @ NEMO-Ridecell

Perception on the Edge - 3D Vision

Applications of scalable 3D perception

- > Model road object interactions (automotive & auto-insurance industry)
- > Model interactions of human robot co-working in warehouses
- > Detect, track & model human motions across surveillance systems
- > Query raw data for interactions for offline/off-board (edge) applications

embedded

VISION summit

Shortcomings with the State-of-the-Art

Direct 3D Object Detection/Prediction

➢ Object scale / depth prediction error

Source: Qian et al 2020 [3]

Two-Stage 3D Object Detection (PseudoLidar)

- Computationally intensive process (large memory footprint)
- Smaller objects are often missed by depth prediction algorithms

embedded

VISION

A Novel Object Representation

Source: robocademy

- > Objects as spatio-temporal 3D points in birds eye view
- > 2D object detection + depth prediction = 3D object points
- > Track-able across video frames
- ➤ Computationally inexpensive ~10x faster than [5]
- ➢ No need for laborious & expensive 3D annotations

Proposed Architecture

Tracklets + Previous Depth (optional)

- > Fu et al, Deep Layer Aggregation 2019 34 Layered Convnet with hierarchical aggregation
- Deformable Convolutional Networks 2017 Dai et al 2017, deforming convolutions for enhancing transformations
- ➤ Tracklets: Short Track of object in 3D over a small number of frames

embedded

VISION

Qualitative Results - Depth Prediction

Input Image

Ground Truth Depths

Our Predictions

DORN [4]

* At inference, monocular depth prediction can be computed using only the input frame and does not need the adjacent frames

© 2022 Nemo @ Ridecell

embedded

VISION

Qualitative Results - Overall

Input Image

Our Object Detections Our Depth Predictions

Ground Truth Depths

embedded

VISION summit

Quantitative Results - Depth Prediction

	θ	Supervision			Error Metric				Accuracy Metric		
	-	Depth	Pose	Unsupervised	Abs Rel	Sq Rel	RMSE	RMSE log	$\delta < 1.25$	$\delta < 1.25^2$	$\delta < 1.25^3$
-	Eigen et al. [6] (Coarse)	✓			0.214	1.605	6.563	0.292	0.673	0.884	0.957
	Eigen et al. [6] (Fine)	\checkmark			0.203	1.548	6.307	0.282	0.702	0.890	0.958
	Liu <i>et al</i> . [22]	~			0.202	1.614	6.523	0.275	0.678	0.895	0.965
Current state-	DORN [8] (50m cap)	~			0.071	0.268	2.271	0.116	0.936	0.985	0.995
of-the-art	BTS [20]	\checkmark			0.056	0.169	1.925	0.087	0.964	0.994	0.999
VS.	Ours*	\checkmark			0.102	0.750	4.137	0.169	0.898	0.967	0.986
(Ours)	Godard et al. [12]		√		0.148	1.344	5.927	0.247	0.803	0.922	0.964
	Garg et al. [9] (50m cap)		\checkmark		0.169	1.080	5.104	0.273	0.740	0.904	0.962
	PackNet-SfM [13] (640 x 192 res.)		\checkmark		0.078	0.420	3.485	0.121	0.931	0.986	0.996
	Zhou et al. [46](w/o exp. mask)			\checkmark	0.221	2.226	7.527	0.294	0.676	0.885	0.954
	Zhou <i>et al.</i> [46]			\checkmark	0.208	1.768	6.856	0.283	0.678	0.885	0.957
	Zhou et al. [46](50m cap)			\checkmark	0.208	1.551	5.452	0.273	0.695	0.900	0.964
-	Kuznietsov et al. [17]	~	√(stereo)		0.113	0.741	4.621	0.189	0.875	0.964	0.988
	Kuznietsov et al. [17]		√(stereo)		0.308	9.367	8.700	0.367	0.752	0.904	0.952

Comparison of Monocular depth prediction results on KITTI dataset

Threshold: % of y_i s.t. $\max(\frac{y_i}{y_i^*}, \frac{y_i^*}{y_i}) = \delta < thr$ Abs Relative difference: $\frac{1}{|T|} \sum_{y \in T} |y - y^*| / y^*$ Squared Relative difference: $\frac{1}{|T|} \sum_{y \in T} |y - y^*| / y^*$ RMSE (linear): $\sqrt{\frac{1}{|T|} \sum_{y \in T} ||y_i - y_i^*||^2}$ RMSE (log): $\sqrt{\frac{1}{|T|} \sum_{y \in T} ||\log y_i - \log y_i^*||^2}$ RMSE (log, scale-invariant): The error Eqn. 1

Quantitative Results - Object Tracking

	Time(ms)	MOTA \uparrow	MOTP \uparrow	MT ↑	$\mathrm{ML}\downarrow$	IDSW \downarrow	FRAG↓
AB3D	4+D	83.84	85.24	66.92	11.38	9	224
BeyondPixel	300+D	84.24	85.73	73.23	2.77	468	944
3DT	30+D	84.52	85.64	73.38	2.77	377	847
mmMOT	10+D	84.77	85.21	73.23	2.77	284	753
MOTSFusion	440+D	84.83	85.21	3.08	2.77	275	759
MASS	10+D	85.04	85.53	74.31	2.77	301	744
Centertrack	82	89.44	85.05	82.31	2.31	116	334
Centertrack*	30.47	81.63	82.96	85.25	2.87	44	157
Ours*	31.70	83.54	84.67	79.86	3.59	27	138

Comparison of Object Tracking results on KITTI dataset (D - Detection time)

Object Tracking Sub-Module

MOTA: Multi-Object Tracking Accuracy MOTP: Multi-Object Tracking Precision MT: Most Tracked objects ratio (> 80% time) ML: Most Lost objects ratio (< 20% time) IDSW: Number of Identity Switch FRAG: Track Fragmentation

embedded VISION

Qualitative Results - Object Interactions

P/C1
BQ0

Qualitative representation interactions; right between ego vehicle (blue) and an actor of interest (marked in red) - frames on left

Conclusion & Future Work

- ➢ Novel 3D object representation for off-board applications.
- ➢ Objects as spatio-temporal 3D points
- ➤ Unified learning framework that is computationally 10x faster than SOTA
- > Eliminates need for expensive 3D annotations and data collection setup
- ➢ Inexpensive & efficient direction for off-board perception applications
- ➤ Efficient for modeling object onteractions in 3D
- ➢ Replaceable network components compatible for edge compute
- ➢ Model object interactions end-to-end − future work

embedded VISION

Contributors

Paridhi Singh, Computer Vision Engineer

Gaurav Singh, Systems Architect & Perception Lead

Arun CS Kumar, Engineer

References

[1] Bhat, S. F., Alhashim, I., & Wonka, P. (2021). Adabins: Depth estimation using adaptive bins. In *Proceedings* of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 4009-4018).

[2] Ma, X., Zhang, Y., Xu, D., Zhou, D., Yi, S., Li, H., & Ouyang, W. (2021). Delving into localization errors for monocular 3d object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 4721-4730).

[3] Qian, R., Garg, D., Wang, Y., You, Y., Belongie, S., Hariharan, B., ... & Chao, W. L. (2020). End-to-end pseudo-lidar for image-based 3d object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 5881-5890).

[4] Fu, H., Gong, M., Wang, C., Batmanghelich, K., & Tao, D. (2018). Deep ordinal regression network for monocular depth estimation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2002-2011).

[5] Wang, Y., Chao, W. L., Garg, D., Hariharan, B., Campbell, M., & Weinberger, K. Q. (2019). Pseudo-lidar from visual depth estimation: Bridging the gap in 3d object detection for autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 8445-8453).

