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Leading development platform for 
machine learning on edge devices

103,933 new projects (!) created since 
last Embedded Vision Summit

40% of these are vision projects

Edge Impulse
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Edge Impulse project count



Can you trust ML models?
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https://medium.com/@damoncivin/arm-at-data-science-africa-2018-1071389e92d9



Countering with an 'unknown' state
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Giraffe Zebra Other



Dataset asymmetry
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Normal operation Faulty operation



Dataset asymmetry
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Fault state 2
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Fault state 4

Normal operation



Anomaly detection
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Training data

All potential
inputs

x Unseen input
(no anomaly)

x

Unseen input
(anomaly)



Auto-encoders?
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Input image Reconstructed image

diff w/ input image:
similar? no anomaly.



• Computationally expensive, need both encoder/decoder.

• Working in pixel space is not great: poor evaluation metric, blurry 
images.

• Visual anomaly detection requires very high resolution images.

• Same accuracy: 106 parameters (auto-encoder) vs 103 parameters 
(our new approach).

Why auto-encoders don't work
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Anomaly detection on sensor data
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DSP Features

Input

Clustering algorithm

Great for basic sensor data
for which you can reason about features



Clustering with Gaussian Mixture Models
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Applying this to visual AD
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Input

Neural network embeddings

Gaussian Mixture Models

Operates on feature space, 
not pixel space



Testing out this premise: MobileNet
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Testing out this premise: MobileNet
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In lots of visual inspection cases only part of 
the image is anomalous.

Input image might be very large, if only 0.5% 
of your image covers an anomaly => hard to 
get your loss function right.

Knowing where a fault is, is super useful for 
humans!

Where is the anomaly?
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Edge Impulse FOMO
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Each cell is a

classifier



Edge Impulse FOMO
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Each cell is a

classifier



Replace classification with a GMM per cell.

Each cell now has an anomaly score.

Fully convolutional, can train on patches of 
data.

Can train on only non-anomalous data.

Similar performance as FOMO:
Up to 30 fps on Cortex-M7, <200K RAM

FOMO-AD
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Each cell is an

anomaly detector





Cortex-M7 @ 480 MHz: 30 fps (96x96 MobileNetV2 a=0.1)

Raspberry Pi 4: 60 fps (160x160 MobileNetV2 a=0.35)

Himax DSP @ 400 MHz: 14 fps (96x96 MobileNetV2 a=0.35)

Cortex-M4F @ 156 MHz: 5 fps (96x96 MobileNetV2 a=0.05)

My Macbook: 1000 fps :-)

(Can be bolted on other CNNs, e.g. MobileNetV1)

Performance
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Example: crack QA
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Example: production line monitoring
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✅

❌



Where doesn't this work

23

Things that are not in
ImageNet

Things larger than 
receptive field

Things that convolutions
have trouble picking up



• Embeddings can have a large number of dimensions. Random 
projection helps cut this down, with little effect on accuracy.

• Calculating the embeddings can be shared between classifier and 
GMM. Just add two heads to your network.

• Training the anomaly detector can be done on the edge (if you 
have the compute power).

• Want to add custom code to a neural network graph (like an 
anomaly detector head)? Look at JAX1.

What we've learned
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[1] https://jax.readthedocs.io/en/latest/



Questions?
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Wednesday 11:25AM

See live demos in our booth!

Docs: https://docs.edgeimpulse.com

Questions: jan@edgeimpulse.com

https://docs.edgeimpulse.com
mailto:jan@edgeimpulse.com
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