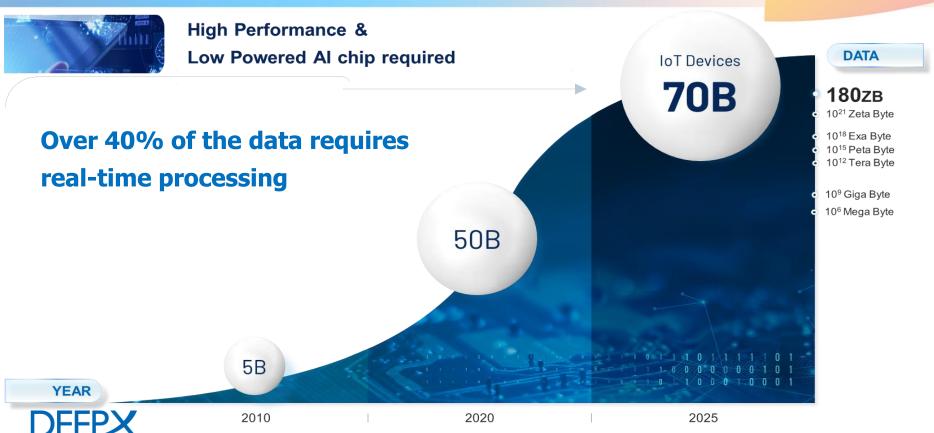


Toward the Era of AI Everywhere

LOKWON KIM

CEO

DEEPX



Rise of Edge AI

Hyper Connectivity

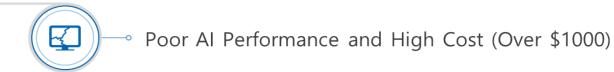
CES2023 - Takeways

Everything with wheels has been demonstrated to move autonomously. All camera or sensor companies demonstrated object detection solutions.

Blocking Points for AI Everywhere

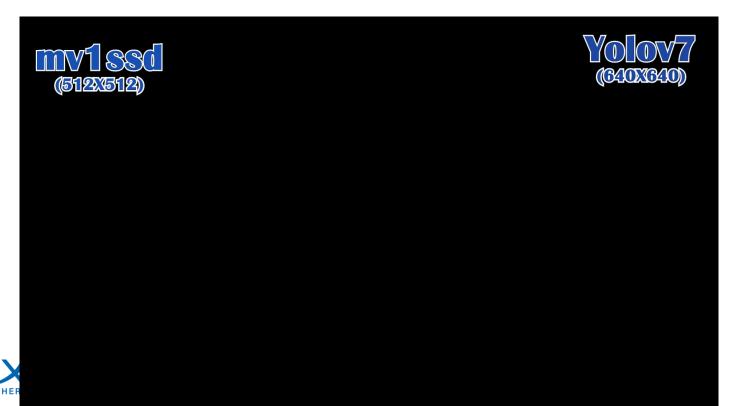
Mismatch Between AI and Edge devices

- ✓ Processing AI requires greater data and computations than any other algorithm created by humans.
- ✓ Al algorithms are rapidly evolving and becoming more intelligent, adding new mathematical operators and requiring more data and computations.


- → By nature, Al is ill-suited for edge device applications.
- → Need a solution that goes beyond limits of theory!

#1: Conventional Solution

Limitations in GPU for on-device Al



#2: Edge Applications Require SOTA AI Models

Some NPU solutions improved performance and power efficiency, but ...

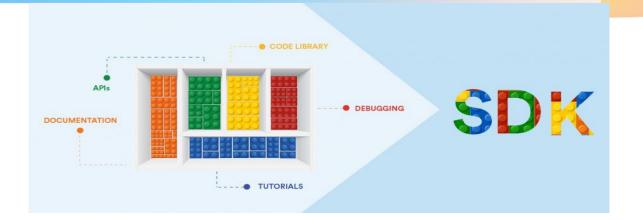
#3: A ~1% Accuracy Loss Is Too Much!

- ✓ Using 8-bit integer instead of 32-bit floating point is the key for power and area efficiency on resource-constrained edges
 - → Normally, results in AI accuracy drop compared to GPUs.
- ✓ With GPUs, edge application developers create AI models for their own applications.
 - → The actual intelligence of the application is determined by edge NPUs.
- → This incurs another loop of the Al accuracy validation for commercial applications which incurs longer development time and effort.

A 1% AI accuracy drop is too much for easy deployment of edge AI.

Target Accuracy Drop < 1%?

#4: A Single One-Size-Fits-All Solution?



- ✓ There are various AI edge device applications.
- ✓ Each edge device Al application has <u>specific function</u>, <u>performance</u>, <u>and cost requirements</u>.
- → A family of chips with different functions, price, and performance is necessary for different applications.

#5: Developing Edge AI Software Takes Too Much Time and Effort

- ✓ Edge AI application developers demand an easy-to-use SDK.
 - (In the Computer Vision Developer Survey conducted in late 2022 by the Edge AI and Vision Alliance, "algorithm implementation/optimization" was named as one of the most challenging aspects of product development (37%).)
- ✓ Some SDKs require several months to learn how to use.
- ✓ Some SDKs require understanding of hardware architecture and deep technical features.
- \rightarrow Not easy to deploy AI!

DEEPX Disruptive Strengths

DEEPX's Key Differentiators

14

World Leading SOTA AI Algorithms

+ Trans	former Model (ViT etc.)			
✓	densnet			
✓	googlenet			
✓	mnasnet			
✓	mobileNet			
✓	ResNet			
✓	SSD			
✓	Yolov3, v4, v5, v7			
✓	EfficientNet/Det			
✓	BiseNet			
✓	ShelfNet			
✓	PIDNet			
✓	SFA3D			
+ Other AI models				
(Mo	del Zoo: > 170 models)			

The World's First Al Accuracy Technology (mAP)

	Model	FP32 NVIDIA	INT8 Company A	INT8 DEEPX
*00	MobileNet SSD	23	22.2	22.6
	Yolov4	49.6	41.55	49.3
	Yolov5m	44.1	39.12	43.7
	YoloXs	40.3	37.47	41.1
	Yolo7m	51.0	N/A	50.9
*21	MobileNetv1	71.48	70.13	72.42
	ResNet50	75.94	74.69	75.95
	EfficientNet-B0	77.52	76.96	77.62
Seg*	BiseNet	75.19	N/A	75.97
	PIDNet	78.76	N/A	78.79
	DeepLabv3+	72.07	N/A	72.37

The World's best Power/Performance Efficiency

Company	TOPS/W Resnet-50	FPS/TOPS Resnet-50	
DEEPX	> 10	60	
Company A	8.6	47	
Company B	8.8	25	
Company C	4.47	26	
Company D	4.0	25	
NVIDIA.	1.8	17	
Company E	0.7	29	
Company F	5.0	Unknown	

^{*} **OD** | Object Detection * **IC** | Image Classification * **Seg** | Segmentation

A Successful Customer Collaboration

41.8%

The power/performance efficiency of DEEPX NPU is 10X higher than GPU.

41.9%

0.1%↑

The AI accuracy of DEEPX NPU is higher than GPUs.

A Comparison with a Reference Platform

Models		Throughput (FPS): NVIDIA Jetson Orin	Throughput (FPS): DX-M1	Delta (%)	NVIDIA Inference/\$	DEEPX Inference/\$
		GPU+DLA (200TOPS) 30W / \$999	NPU (23TOPS) 5W / \$30-\$80			
	MobileNetv1 (224x224)	3530	5751	163%	3.53	71.89
IC	MobileNetv2 (224x224)	2072	4586	221%	2.07	57.33
	MobileNetv3-Large (224x224)	1034	4228	409%	1.04	52.85
	ResNet50 (224x224)	1367	1337	-2%	1.37	16.71
	EfficientNet-B0 (224x224)	613	3236	528%	0.61	40.45
OD	YOLOv4 (800x800)	62	62	-	0.06	0.78
	YOLOv5s (640x640)	551	590	7%	0.55	7.38

10Xmore performance-power efficient **10X**more performance-cost efficient

Product Roadmap (2023)

PerformanceType: Al AccFeatures: PC

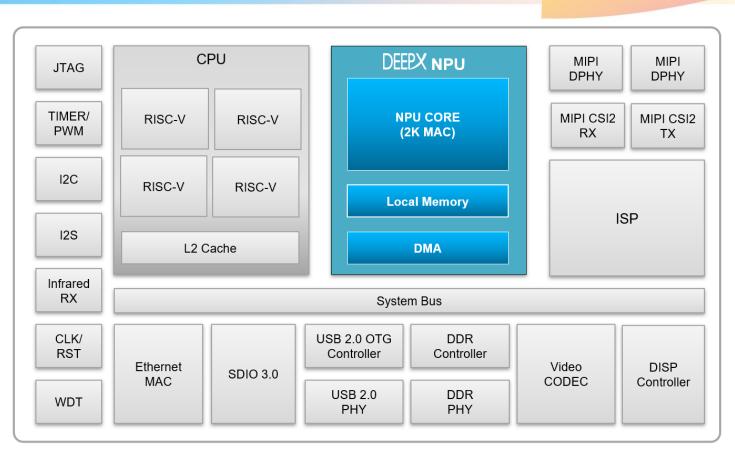
- · Performance: 200 eTOPS**
- · Type: Al Accelerator in M.2
- · Features: PCle, ARM CPU LPDDR5
- · Launch Date: 23.2Q

02 DX-H1

- · Performance: 1,600 eTOPS**
- · Type: Al Accelerator in PCle Card
- · Features: PCle Card
- · Launch Date: 23.2Q

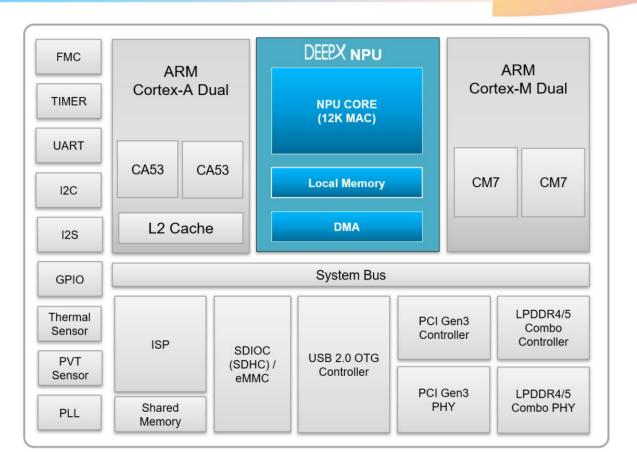
- Performance: 12 eTOPS**
- · Type: SoC
- · Features: RISC-V CPU, ISP, MIPI LPDDR4, Video Codec
- · Launch Date: 23.2Q

04 **DX-L2**



- · Performance: 38 eTOPS**
- Type: SoC
- · Features: RISC-V CPU, ISP, MIPI LPDDR4, Video Codec
- · Launch Date: 23.2Q

DX-L1 Targets Single-camera AI Applications



DX-M1 Targets Clustered Cameras or Workloads VISION

AI Inference Server Solution for ESG/TCO

Performance: Up to 18POPS

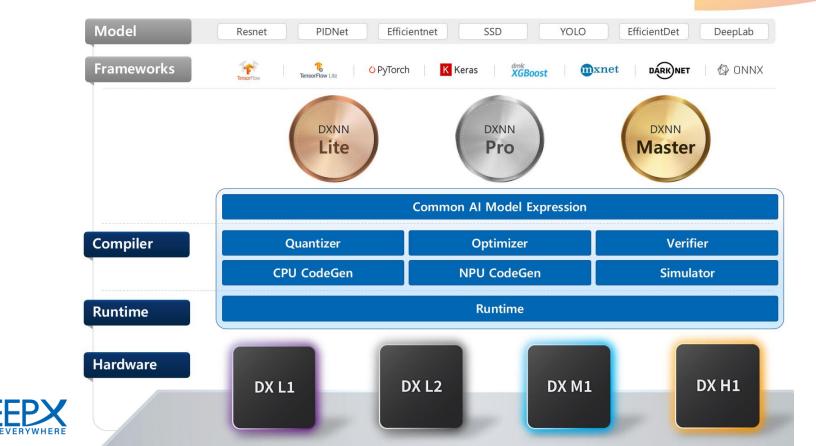
· Features: PCIE Card, Server, Rack

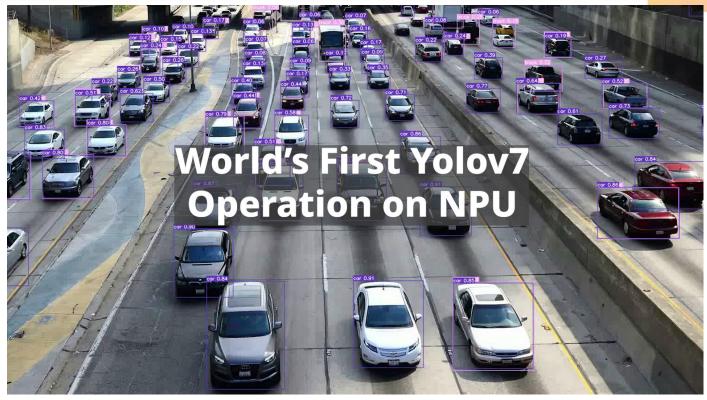
· Launch Date: 23. 3Q

* DX H1C: PCle Card (184TOPS)

* DX H1R: DX H1S x 6ea (18POPS)

* DX H1S: DX H1C x 10ea (1.8POPS)




DXNN - SDK for DEEPX NPUs

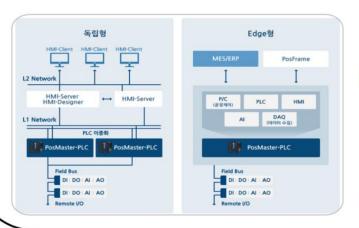
Enjoy the SOTA AI on All DEEPX Solutions

Representative Project #1

Hyundai Motors

Mobility of Everything

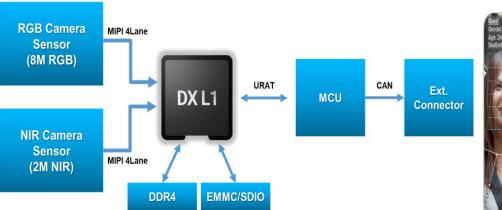
- Smart Camera Sensor or AP (PoC)
 - ✓ Al Performance
 - ✓ Price


Representative Project #2

POSCO DX

Edge Computing Solution for Smart Factory

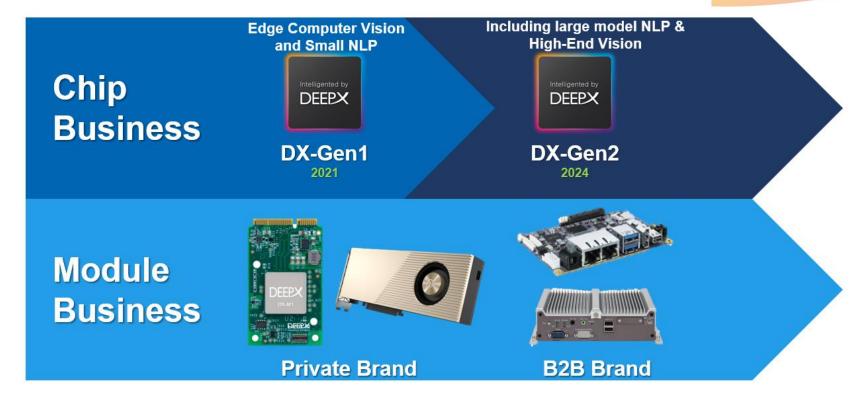
 Al based PosMaster (Machine Vision & Machine Maintenance (In Development)


Representative Project #3

Jahwa

Smart Camera Module Development for Automotive

DSM & Smart Camera Module (In Development)


25

Product Strategy

26

Summary

Edge AI requires performance, low power, low cost, SOTA AI algorithms, AI accuracy, and ease of use.

DEEPX NPU can:

- 1. Run **SOTA AI models**.
- 2. Get the **best AI accuracy**.
- 3. Achieve the **highest performance**, **power efficiency**, **and cost efficiency** (including BOM cost).

Please visit our demo booth and check it out!

Thank you!!

Company Info, Demo and Additional Talk

- 1. Demo Booth: #103
- 2. DEEPX Homepage

https://www.deepx.ai

3. Linkedin & Youtube

2023 Embedded Vision Summit

Additional Talks from DEEPX

"State-of-the-Art Model Quantization and Optimization for Efficient Edge AI"

(Hyunjin Kim, Wednesday, May 24, 12:00 pm)

