2023 embedded VISION SUMMIT

AI-ISP:

Adding Real—Time AI Functionality to Image Signal Processing with Reduced Memory Footprint and Processing Latency

Mankit Lo Chief Architect, NPU IP Development VeriSilicon Inc.

What Is an ISP (Image Signal Processor)?

 Image Signal Processor is responsible for processing the raw image data captured by a camera's sensor and turning it into a usable image

ISP Traditional Hardware Pipeline

embedded

The Growing Body of Research on AI for ISP

"Learning to See in the Dark": low-light image enhancement

(a) Camera output with ISO 8,000

(b) Camera output with ISO 409,600

(c) Our result from the raw data of (a)

The Growing Body of Research on AI for ISP (cont 2/3)

 "Deep Joint Demosaicing and Denoising"

 "Learning Deep Priors for Image Dehazing"

The Growing Body of Research on AI for ISP (cont 3/3)

 "HDR image reconstruction from a single exposure using deep CNNs"

 "Merging-ISP: Multi-Exposure High Dynamic Range Image Signal Processing"

embedded

Noise Reduction with AI-ISP

Without AI-ISP

LUX 0.2 lux

© 2023 Verisilicon

Low Light Image Enhancement for Automotive with AI-ISP

Without AI-ISP

With AI-ISP

Not to Fall Behind

How to Implement an AI ISP?

© 2023 Verisilicon

embedded

Real-time AI-ISP Challenges

- Programmable: Ever improving algorithms and changing scenarios demand a programmable solution.
- Computation: High resolution sensors and powerful algorithm require high computation power

embedded

Real-time AI-ISP Challenges (cont 2/3)

- Memory usage: Conventional image signal processing techniques often require the whole image frame to be stored in memory before processing can begin, which result in high memory usage.
- DDR-SDRAM bandwidth: Requiring the whole image stored means the need of using DDR-SDRAM.
- Power: Accessing DDR-SDRAM requires more power
- Latency: Latency is measured in frames

Real-time AI-ISP Challenges (cont 3/3)

- Task partitioning: The need to distribute tasks to multiple computation units efficiently
- Data sharing: Among multiple computation
 units
- Synchronization: How to synchronize among multiple computation units

embedded

Without AI Processing

• ISP can typically process one raster line at a time

With AI: Loosely Coupled Frame-based

• ISP is forced to store/read whole frame in/from memory

embedded

SUMMI

With AI: Tightly Coupled Line-Based

- Need NPU that can do processing line-by-line
- Need ISP and NPU that work closely together

- DDR-less
- Low latency
- Low power

Task Splitting

- High computation and high internal bandwidth requires multiple NPU cores
- Split image in the horizontal dimension

embedded

NO Per Laver With Per Layer **Overlap Sharing Overlap Sharing Overlap Sharing** NPU CORE 0 NPU NPU NPU Core Core Core NPU CORE 1 NPU CORE 2 Silicor © 2023 Verisilicon

Per Layer Overlap Sharing

 Overlapped data shared among cores in every layer

NPU

Core

AI-ISP: Pixel Streaming

In

- Line-based latency
- "SplitX" job partition

Use Case: AI-3DNR

 Current frame data from ISP streaming through NPU while previous frame reference is fetched from DDR-SDRAM

Use Case: AI-HDR

• Multiple sensor inputs stream through NPU

VeriSilicon IPs

VeriSilicon Vivante® ISP IP

© 2023 Verisilicon

VISION SUMMIT **VIP9400 AI Vision** VIP9X00MP **VIP9000** 50 - 200 174 TO Al Voice TOPS VIP9000Nano Server Class Automotive **Al Pixel** VIP9000Pico Smartphones Sub 1 TOPS MEDICAL INFOGRAPHICS Wearables & IoT 0000 Smart Home M 00 1111 H

Silicon

VeriSilicon Vivante® NPU IP

embedded

VeriSilicon AI-ISP solution

- VeriSilicon Vivante ISP
- VeriSilicon Vivante NPU
- FlexA-PSI seamlessly FlexA-PS connecting ISP and NPU
- Al algorithms

AI Contents

Unified Software Architecture, User API, Test Case and 3rd Algorithm Support.....

AI-Face Detect – 3A

- Auto exposure
 - based on face detection

- Skin tone style fine tune
 - based on face detection

Gain = 8.6

Gain = 16 Higher Exposure based

AI-Scene Categorization

- AI to distinguish all scenes into different categories with higher accuracy
- Interpolate between different scene settings based on scene probability

AI-Detect (Traffice Light, Bad Visibility)

- AI traffic object detection
 - Traffic light, vehicle
 - Pedestrian, bad weather
- Identify region of interest
- Adjust image
 - 3A
 - Global tone mapping
 - Wide dynamic range

Clear Shape of light

embedded

SUMMI

Without ROI

With ROI

Bad weather visibility

AI-BR 1 Lux – Low-light Condition

(Left) : before Brighten

(Right) : after Brighten

- Lightweight models
- Raw In / Raw Out

Silicon

31

Conclusion

• ISP

Flexible in-pipeline replacement

• NPU

- Programmability
- Performance
- Line-based processing
- Layer level overlap sharing

• ISP/NPU communications

- Synchronization
- Line-based data transfer
- Multiple channels
- DDR-less or low memory footprint
- Low latency
- Low power

Resources

VeriSilicon Vivante ISP IP

https://www.verisilicon.com/en /IPPortfolio/VivanteISPIP

VeriSilicon Vivante NPU IP

https://www.verisilicon.com/en /IPPortfolio/VivanteNPUIP

2023 Embedded Vision Summit

 Visit VeriSilicon's booth to speak with technology experts and watching exciting demos

- C. Chen, Q. Chen, J. Xu, and V. Koltun (2018). Learning to See in the Dark. <u>https://doi.org/10.48550/arXiv.1805.01934</u>
- M. Charbi, C. Chaurasia, S. Paris, and F. Durand (2016). Deep Joint Demosaicking and Denoising. <u>http://dx.doi.org/10.1145/2980179.2982399</u>
- Y. Liu, J. Pan, J. Ren, and Z. Su (2019). Learning Deep Priors for Image Dehazing. <u>https://doi.org/10.1109/ICCV.2019.00258</u>

- G. EILERTSEN, J. KRONANDER, G. DENES, R. K. MANTIUK, and J. UNGER (2017). HDR image reconstruction from a single exposure using deep CNNs. <u>https://doi.org/10.48550/arXiv.1710.07480</u>
- P. Chaudhari, F. Schirrmacher, A. Maier, C. Riess, and T. Köhler (2021). Merging-ISP: Multi-Exposure High Dynamic Range Image Signal Processing. <u>https://doi.org/10.48550/arXiv.1911.04762</u>

