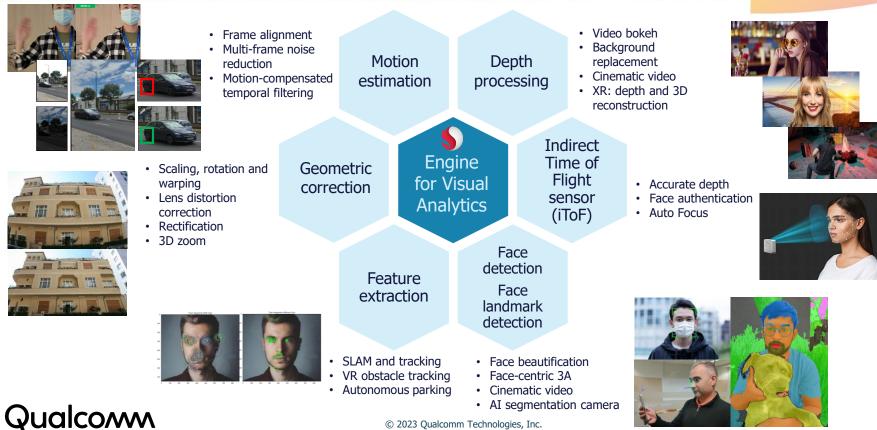
2023 embedded VISION SUMMIT


Develop Next-Gen Camera Apps Using Snapdragon Computer Vision Technologies

Judd Heape VP, Product Management Camera, Computer Vision and Video

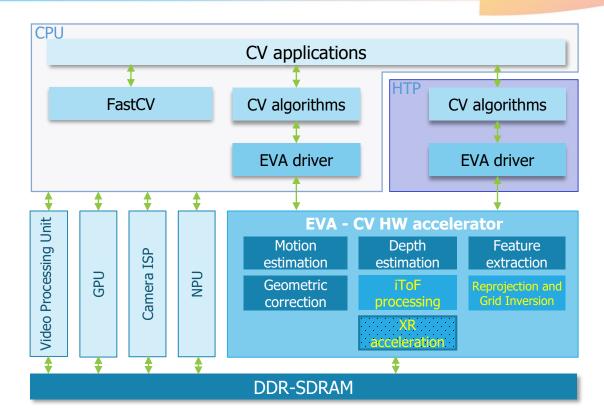
EVA: Engine for Visual Analytics

© 2023 Qualcomm Technologies, Inc.

2

EVA architecture

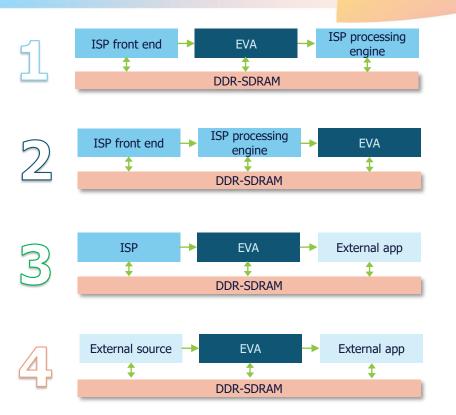
Engine for Visual Analytics


Computer Vision HW acceleration

Power savings

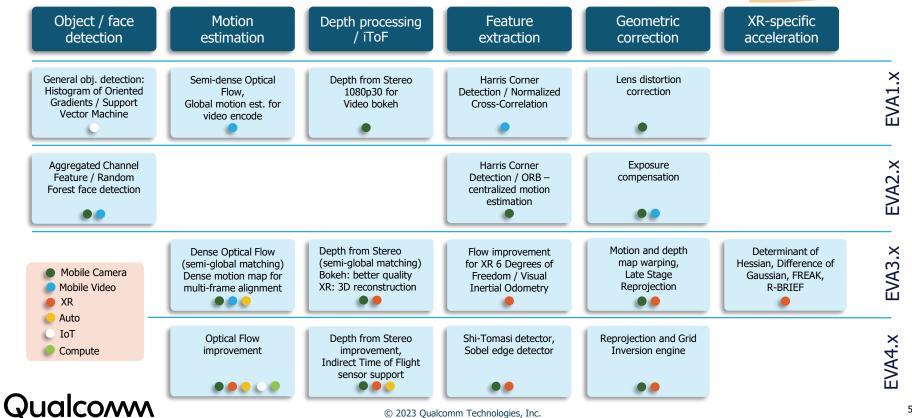
Performance enhancement

Access EVA APIs from CPU or Hexagon Tensor Processor (HTP)


Offload NPU / DSP / GPU / CPU for CV workloads

EVA access

- EVA blocks function from memory-to-memory for maximum flexibility
- APIs (for both CPU and HTP) include both synchronous APIs and asynchronous APIs
- There are direct interrupts between HTP and EVA cores for low-latency communication
- EVA includes an embedded processor primarily for task scheduling and managing hardware pipes
- EVA hardware pipes are shared between certain functions


Qualcomm

embedded

SUMMIT

EVA hardware blocks

EVA key features and KPIs

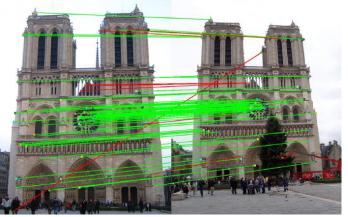
CV features	Next-generation Snapdragon EVA4.0	Snapdragon SM8450 / SM8550 EVA3.0
Optical Flow	Semi-global matching-based dense Optical Flow with quality improvement 2 modes: dense and semi-dense 1152x644 @ 60fps for dense, 1080p60 for semi-dense	Semi-global matching-based dense Optical Flow 2 modes: dense and semi-dense 1152x644 @ 60fps for dense, 1080p60 for semi-dense
Depth from Stereo	Semi-global matching-based Depth from Stereo, ± 3 pix search range 720p60, concurrent with Optical Flow	Semi-global matching-based Depth from Stereo, ± 3 pix search range 720p60, concurrent with Optical Flow
Active depth sensing	iToF Depth range 0.2-7 m, VGA @ 30fps Power saving: 1 W vs. SW iToF	-
Detectors, descriptors and matching	Pyramid generation Harris Corner, Shi-Thomasi detectors ORB, R-BRIEF and FREAK descriptors Normalized Cross-Correlation w/inline warping	Pyramid generation Harris Corner detectors ORB feature descriptor Normalized Cross-Correlation w/inline warping
Scaling, rotation and warping	Sparse-grid transform (35x27 or 67x51) Dense-grid transform (1:8) Perspective transform (3x3) 1920x1080 @ 240fps	Sparse-grid transform (35x27 or 67x51) Dense-grid transform (1:8) Perspective transform (3x3) 1920x1080 @ 240fps
Reprojection and Grid Inversion	3D depth map reprojection 3D motion map reprojection Motion vector resampling	-

EVA feature APIs

EVA version	EVA features	EVA API
	Image warping	evaWarp_Sync / evaWarp_Async
	Depth from Stereo	evaDfs_Sync / evaDfs_Async
	Normalized Cross Correlation	evaNccFrame_sync / evaNccFrame_Async
	Optical Flow	evaOF_Sync / evaOF_Async
	Feature extraction (Harris Corner Detection)	evaFeaturePoint_Sync / evaFeaturePoint_Async
	Feature Descriptor calculation & matching	evaDcm_Sync / evaDcm_Async
	Downscaler	evaScaledown_Sync / evaScaledown_Async
	Pyramid image generation	evaPyramidImage_Sync / evaPyramidImage_Async
	Motion vector resample	evaMVResample_Sync / evaGridResample_AsFync
EVA4.0 Next-gen Snapdragon	Depth reprojection	evaDepthReprojection_Sync / evaDepthReprojection_Async
	3D projection of motion field	evaMotionField3DProjection_Sync / evaMotionField3DProjection_Async

Optical Flow

embedded VISION SUMMIT


Sparse Motion

- Feature point detection and matching
- Global motion estimation

Dense Motion

- Semi-dense Optical Flow
- Dense Optical Flow
- Replace low-confidence local motion with global motion (new in EVA4)

	Semi-dense	Dense
Motion density	Every 2x2 block	Every pixel
Motion accuracy	1/8 pixel	1/16 pixel
Motion range (X,Y)	±128, ±64	±64, ±32
Max resolution	1920x1440	1920x1440
Confidence map	8-bit	8-bit
Frames per second	1920x1080 @ 60fps	1152x648 @ 60fps

Sparse motion

Qualcom

 \odot 2023 Qualcomm Technologies, Inc.

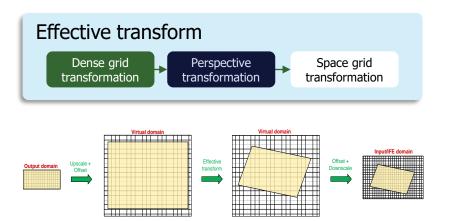
Dense motion

Depth from Stereo estimation

Depth from Stereo

- Sum of Absolute Difference matching between left and right images
- Super-pixel segmentation on Simple Linear Iterative Clustering
- Feature extraction and matching
- Confidence map and post-processing

	KPI
Depth density	Every pixel
Disparity accuracy	1/16 pixel
Disparity level	[0, 63]
Max resolution	720p 60fps
Confidence map	8-bit


Geometric Correction Engine

Low-power, high-quality warping

Maps output pixels to input pixels

Effective transformation

- Sparse-grid transformation (35x27 or 67x51)
- Dense-grid transformation (8 pixel grid) .
- Perspective transformation (3x3 transform)

.

Use Cases

- Lens distortion correction
- Motion vector grid composition .
- Rectification

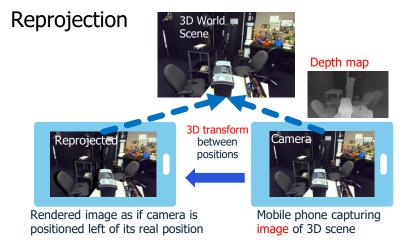
Rectification

embedded

SUMMI

VISI

nmn.


H 111

THER .

Reprojection and Grid Inversion

Grid Inversion Markov Mapping from Img1 to Img2 Required mapping from Img2 to Img1 - Uniform sample positions - Nonuniform sample positions

Use cases

- Temporal deblur
- Super slow motion
- Video concurrency transform composition
- Frame interpolation for latency reduction

Use cases

- Depth and RGB sensor alignment
- Gaze correction
- XR: Late Stage Reprojection
- 3D Spatial Alignment & Translation: eliminate parallax jump
- 3D zoom
- 3D camera motion special effect

Feature detectors and descriptors

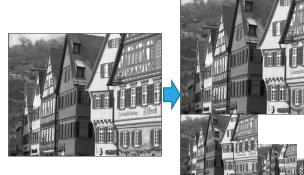
Pyramid generation

• Up to 6 levels

Detectors

- Harris Corner detector
- Shi-Tomasi detector
- Sobel edge detector

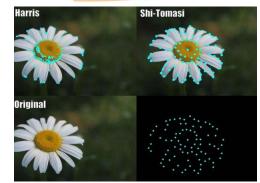
Descriptors


 Oriented FAST detector and rotated BRIEF descriptor (R-BRIEF)

Matching

 Normalized Cross-Correlation and binary for R-BRIEF

	КРІ
Modes	8x8 cell or zone
Max resolution	UHD 3840x2160
Frame rate	1920x1080 @ 60fps
Descriptor size	256 for R-BRIEF


Qualcom


Pyramid generation

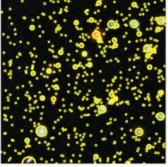
Sobel edge map

Harris Corner vs. Shi-Tomasi

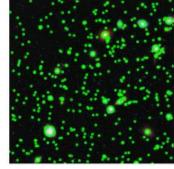
Normalized Cross-Correlation

XR Accelerator: detectors & descriptors

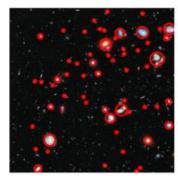
Blob detectors and edge map


- Determinant of Hessian
- Difference of Gaussian
- Laplacian of Gaussian

Descriptors


- Rotated BRIEF descriptor
- FREAK descriptor

Matching


Binary matching

Laplacian of Gaussian

Difference of Gaussian

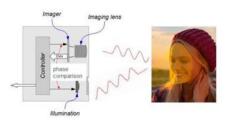
embedded

VISION SUMMIT

Determinant of Hessian

	КРІ
Modes	8x8 cell or zone
Max resolution	UHD 3840x2160
Frame rate	1920x1080 @ 60fps
Descriptor size	256 for R-BRIEF, 512 for FREAK

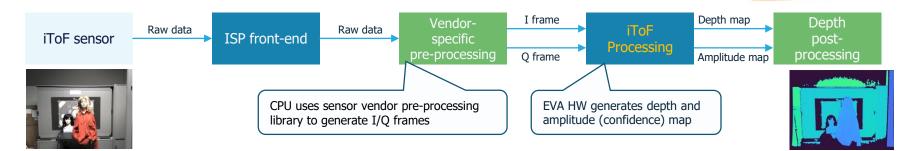
FAST and Rotated BRIEF (ORB)



FREAK descriptor

Indirect Time of Flight (iToF)

Active depth sensor


Indirect Time of Flight

- Measurement of phase shift: phase shift is proportional to distance
- Very small pixel size, standard CMOS technology, enables high resolution (QQVGA, VGA up to 720p)

Comparison of depth solutions

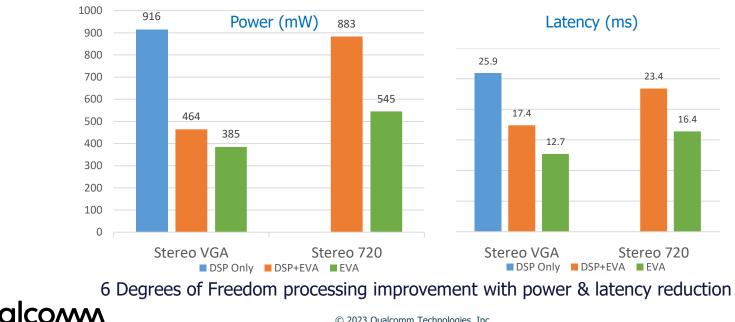
	Depth from Stereo	iToF
Light source	-	Pulsed or continuous light
Power consumption	Low (<100 mW)	High (0.5-1.5 W)
Latency	Low (<8 ms on 720p)	Mid (<10 ms)
Accuracy	Mid	High (<2% * depth)
Resolution	High (VGA, 720p or higher)	Mid to low (VGA, HQVGA or lower)
Depth range	Varies (4 m – 10 m)	Sensor dependent (5 m – 7 m)
Best use cases	Ample ambient light	Indoor

Indirect Time of Flight processing

	КРІ
Image resolution	HQVGA / QVGA / VGA / 720p / QuadVGA / 1080p; min: 32x24, max: 1920x1080
Frequency	Single or dual frequency supported
Mode	Flood, spot
Frame rate	720p60, 1080p30
Input format	Signed 16-bits for In-phase (I) and Quadrature (Q)
Output format	Unsigned 16-bits for depth (1-bit masking + 15-bits depth, normalized / unnormalized) Unsigned 16-bits for amplitude map (confidence)
Power consumption	~20x power saving compared to SW processing

Qualcom

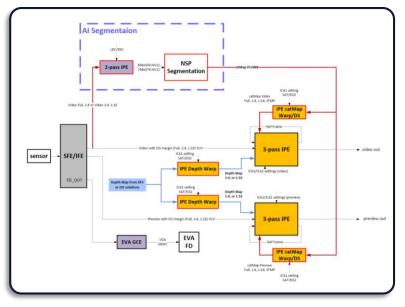
embedded


SUMMIT

The EVA hardware advantage: Power consumption & latency reduction

Three main advantages of running your workload on EVA:

- Low power consumption 1.
- High performance (low latency) 2.
- 3. NPU / DSP / GPU / CPU offloading


CV Use Case 1: Depth map from stereo cameras

Applications

- Accurate camera / video bokeh effect
- Background replacement in video conference or video recording
- AR/VR depth mapping

Video bokeh flow

Qualcom

embedded

VISION

SUMMIT

CV Use Case 2: Dense motion map for video multi-frame HDR

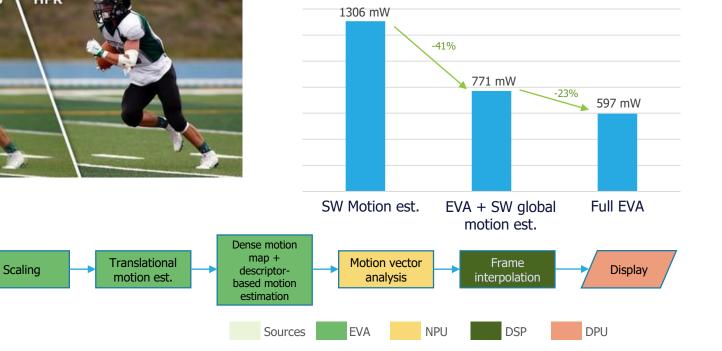
embedded VISION SUMMIT


Key Benefits of EVA

- Estimating and compensating for motion is key to achieve high-quality HDR video
- Removes ghosting artifacts in combined video frames
- Running global motion and local motion estimation simultaneously requires a large amount of computation power
- Superset of motion compensated temporal filtering (noise reduction) use case

Qualcom

Multi-frame HDR flow


© 2023 Qualcomm Technologies, Inc.

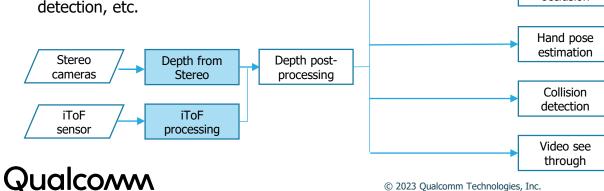
CV use case 3: **Motion estimation in frame rate conversion**

1080p 30fps to 60fps

Qualcom

Video

stream


Camera

Gaming content

CV use case 4: **Depth in XR perception**

Key benefits of EVA

- Depth estimation is a key block in the XR perception pipeline
- Depth from Stereo can work together with ML-based depth estimation to provide better depth accuracy
- Active depth sensing (Indirect Time of Flight) has become popular in many XR use cases, due to its high accuracy
- Depth sensing is essential in enabling multiple use cases such as 3D reconstruction, plane detection, occlusion detection, etc.

3D

reconstruction

Plane detection

Occlusion

Dvnamic

occlusion

For access to the EVA SDK, contact:

Xin Zhong Director, Product Management xzhong@qti.qualcomm.com

Resources

Qualcomm® Mobile AI

Mobile AI | On-Device AI | Qualcomm

Qualcomm Technologies & Google NAS

Qualcomm Technologies and Google Cloud Announce Collaboration on Neural Architecture Search for the Connected Intelligent Edge | Qualcomm

Dr. Vinesh Sukumar Senior Director, Product Management – AI/ML vinesuku@qti.qualcomm.com

Qualcomm Wireless Academy

Fundamentals of AI

Available for free until October 2023

Thank you!

© 2023 Qualcomm Technologies, Inc.