2023 embedded VISION SUMMIT

Processing Raw Images Efficiently with the MAX78000 AI Neural Network Accelerator

Mehmet Gorkem Ulkar Principal Engineer, Machine Learning Analog Devices

Agenda

Mehmet Gorkem Ulkar, PhD Dallas, TX Principal ML Engineer

- 2. MAX78000 overview
- 3. MAX78000 sample applications
- 4. Energy requirements for data manipulation
- 5. Proposal: CNN based de-bayerization
- 6. Results
- 7. Q&A

J Kunkel et al, University of Hamburg 2010, Collecting Energy Consumption of Scientific Data

- Horowitz ISSCC 2014, 1300-2600 pJ per 64b access
 - Chris Rowen, Cadence Design Systems, January 2016, Get Real! Neural Network Technology for Embedded Systems

Software Inference: Slow and Power Hungry

- In inference, computational effort is in **forward** propagation
 - On classic hardware, almost all spent in a triple nested matrix multiplication loop
 - O(n³) to O(n^{2.8}) *
- Very energy intensive even with fast matrix multiply using integer math on DSP or GPU
 - large number of memory accesses

```
// Main loop
for (l = 1; l < NLAYERS-1; l++) {
    // Compute z = w * a
    matrix_mul(&w[l-1], &a[l-1], &z[l]);</pre>
```

```
// Add the bias values : z = w * a + b
matrix_add(&b[l], &z[l]);
```

```
// Compute a = g(z)
nn_activate(z[l].elements, a[l].elements, lv[l]);
```

```
ul(matrix f32 t +a
```

```
matrix_mul(matrix_f32_t *a, matrix_f32_t *b, matrix_f32_t *c)
{
    uint32_t m = a->nrows;
    uint32 t n = a->ncols;
```

```
uint32_t n = a->ncols;
uint32_t p = b->ncols;
```

```
c->nrows = m;
c->ncols = p;
```

```
int i, j, k;
for (i = 0; i < m; i++) {
    for (j = 0; j < p; j++) {
        f_t sum = 0;
        for (k = 0; k < n; k++) {
            sum += a->elements[i * n + k] * b->elements[k * p + j];
        }
        c->elements[i * p + j] = sum;
    }
}
```


4

embedded

CNN Accelerator: MAX78000/MAX78002

- The conv operation is parallelizable in the channel dimension.
 - 64 processors in total, more channels are processed in a multi-pass fashion
- Proper architecture that minimizes data movement provides energy efficiency
 - Each input channel is processed in parallel using different processors to minimize data movement
 - Each processor uses dedicated memory

embedded

MAX78000 AI Micro - System-on-Chip

MAX78000 Benchmarks

Inference Energy mJ

¹28 billion operations/second, ²ARM DSP with CMSIS-NN, running exact same INT8 network as MAX78000, 3STMF722ZE, internal memory, ⁴Includes time to load input,

⁵Does <u>not</u> include time to load input, ⁶STMF746NG + external 3.3V SDRAM IS42S32400F-6BL + SDRAM controller

Network	MACs	MAX78000 CNN at 50 MHz ¹ , 1.2V	MAX32650 ² Cortex-M4, 120 MHz, 1.2V	STM32F7 ² Cortex-M7, 216 MHz, 2.1V		
KWS20	13,801,088	2.0 ms, 0.14 mJ	350 ms, 8.37 mJ	125 ms, 30.1 mJ ³		
FaceID	55,234,560	13.89 ms⁴, 0.40 mJ	1760 ms⁵, 42.1 mJ	714 ms⁵, 153 mJ + 59 mJ⁰		
© 2023 Analog Devices						

Battery Life Leader in Independent Benchmarks

THzürich

Proof-of-Concept standalone smart camera

Assumptions:

- Trigger time: once per minute.
- Battery capacity: 8.64J
- Energy per camera image captured: 0.5 mJ

BASED LEARNING

Platform	Energy per inference (mJ)	
SAMD51	5.34	24h30'	
Apollo3	1.31	80h00'	
Spresense	3.80	46h00	
GAP8	0.52	140h15'	
VEGA	0.14	225h00'	
xCORE.ai	1.26	81h50'	
MAX78000	0.09	244h00'	
Perpetu	ual work with only 100L I time	ux with less than 1 second	
		Michele Magno 29.05.2	2020 18
Free Long-Range	Wireless Smart Camera	a for Face Detection: An accurat	e
<u>rk of novel Edge AI</u>	platforms and milliwa	tt microcontrollers Michele MAG	NO, F

est

embedded

SUMMIT

A Batter benchma NO, Head of the Project-based learning Center, ETH Zurich, D-ITET, EMEA TinyML Talks June 2021

Thinking About Edge AI Use Cases...

then do

action

If my [camera] sees a <u>bear</u>, then <u>take a high-resolution picture and send over cell network</u> If my [thermostat] hears glass break, then send a text message to the owner If my [factory robot] sees a person nearby, then shutdown until they leave If my [pet door] sees a cat with a mouse in its mouth, then lock the pet door and send me a text message

Action Recognition

No redundant calculations

Dataset	Validation Acc.	Paramet ers
Kinetics-400 (4 classes + other)	79.8%	379k

rolling basis

(3 seconds)

People Tracking

No Url

Trail Camera

https://github.com/MaximIntegratedAI/refdes

System Energy: From Traditional Systems to **MAX78000**

© 2023 Analog Devices

- Accelerator drastically lowers CNN energy
- Input and data manipulation become much larger *relative* contributors to energy
- MAX78000 improves data loading, better algorithms can help with data manipulation: e.g. better ways of handling raw images

embedded

SUMME

Figure 1. Bayer Filter (Nkansah et. al., 2022)

Green channe

* Dammer, K., Grosz R., (2017). Demosaising using a Convolutional Neural Network approach. Lund University, Lund, Sweden.

- Sequential Demosaicing
- Iterative Demosaicing
- Machine Learning Methods
- Adaptive Color Plane Interpolation

Data Manipulation: Debayerization

- In order to obtain an RGB format, the raw image must be debayerized. There are several debayerization methods*:
 - Bilinear Interpolation

15

CNN based Debayerization

 Approach 1: Learning the manipulation & interpolation by a CNN model and embedding this network into an accelerator → Efficient way of debayerization

Figure 3. The Network of B2RGBNet (Syu et. al., 2018)

© 2023 Analog Devices

CNN based Debayerization

• Approach 2: Using folding and fixed 1x1 kernels

Step 1: Folding the pixels into channels

Step 2: Convolution with the fixed kernel to obtain RGB

. . . .

Accuracy Results

Mean Squared Reconstruction Error

■ Bilinear Interpolation ■ b2rgb ■ conv w/fold + transconv + conv ■ conv w/fold + b2rgb

- MAX78000 enables battery-powered smart applications at the edge
- Effective data manipulation and preprocessing are much more important
 when using highly-efficient NN inference engines
- Two methods proposed to perform interpolation inside CNN accelerator, MAX78000
- Results show better accuracies compared to simple conventional interpolation; the work is ongoing

- We are waiting for you at the ADI booth!
- Upper-level AI repo: <u>https://github.com/MaximIntegratedAI</u>
- Open-source training repo: <u>https://github.com/MaximIntegratedAI/ai8x-training/</u>
- Open-source synthesis repo: <u>https://github.com/MaximIntegratedAI/ai8x-synthesis</u>
- Data-folding paper: L3U-net: Low-Latency Lightweight U-net Based Image Segmentation Model for Parallel CNN Processors <u>https://arxiv.org/pdf/2203.16528.pdf</u>
- B2RGBNet paper: Learning Deep Convolutional Networks for Demosaicing <u>https://arxiv.org/pdf/1802.03769.pdf</u>

