2023 embedded VISION SUMMIT

Using a Neural Processor for Always-Sensing Cameras

Sharad Chole Chief Technologist, Co-founder Expedera

Always-sensing Cameras: What and Why

- Like always-listening Siri, always-sensing enables a more natural and seamless user experience
- Quality and richness of camera data require much more processing than audio implementations
 - Like always-listening, always-sensing must be processed locally
- Technical requirements:
 - ~500 GOPS to 1 TOPS NPU
 - Ultra-low power
 - Ultra-small area
 - Multiple models

💓 expedera

© 2023 Expedera Inc.

3

- - Optimized edge AI inference IP solutions based on revolutionary packet architecture, applicationconfigured for our customers
 - Silicon Valley startup founded in 2018
 - 3 R&D centers, numerous patents
 - Broad, worldwide deployments
 - 10M+ devices in-field

About Expedera

- Over 200 ExaOps (200,000,000,000,000,000 operations/second) deployed by our customers
- Soft IP: designs in multiple leading-edge nodes

Always-sensing Cameras: What and Why

- Like always-listening Siri, always-sensing enables a more natural and seamless user experience
- Quality and richness of camera data require much more processing than audio implementations
 - Like always-listening, always-sensing must be processed locally
- Technical requirements:
 - ~500 GOPS to 1 TOPS NPU
 - Ultra-low power
 - Ultra-small area
 - Multiple models

NPUs and Always-Sensing Are an Ideal Match

- NPUs are used in wake-word (audio) applications - why can't the same approach apply to video?
- Workloads Edge-friendly vision NNs
 - ISPs/DSPs aren't designed for this sort of specialized processing
- We asked ourselves rather, customers asked us – can we apply the same low power, small, targeted workload approach to video?
 - We have; otherwise, I wouldn't be giving this talk

embedded

SUMMI

Always-sensing Use Cases

- Secure access: facial recognition
- Power management: "find a face" detection to turn on/down/off display
- Gesture recognition: Innovative UX control and operability
- Motion detection: bandwidth-friendly security
- Object detection: capturing events or triggers
- Privacy: "shoulder surfing" alerts

Existing Solutions are Limited

- NPUs, GPU/DSPs, and ISPs are standard in Application Processors
- The system NPU the "Big" NPU is not a good match for always-sensing
 - Excessive power consumption
 - Privacy, memory & data security concerns
 - Contention by multiple applications
 - "Hitting a nail with a piledriver"

embedded

The Case for a Little NPU: Ideal Always-sensing

embedded VISION SUMMIT

- Purpose-designed for smallest area, lowest power consumption, and target networks
 - Area: reduces cost
 - Latency: programmable, guaranteed FPS
 - Power consumption: conserves battery life
- No requirement for external memory
 - Keep processing and data storage local
 - Increased power efficiency
 - Better security and privacy

Specification	Big NPU Little NPU		
Area	~5-8X	1X	
Subsystem Size	>10X	1X	
Latency	Contention w/ activity	Deterministic	
Data Exposure	System DDR	Within always- sensing subsystem	

Big/Little NPU Architecture Options

expedera

© 2023 Expedera Inc.

Expedera's NPU Architecture

expedera

Minimal memory requirements via **Packet Set** Architecture

Ideal power and processing efficiencies Optimized for best performance per area

Packets: A Radical Approach to AI Inference

- Packet aggregate of work with a notion of ۲ dependencies and deterministic execution
 - A contiguous fragment of a NN layer with the entire context of execution: layer type, attributes, priority
- Packets manage activations better/more . intelligently
- Results: minimum number of moves without ۲ hurting accuracy
 - Greatly increases performance while lowering power and area requirements

11

embedded

Can execute in parallel

Neural Network layers

Expedera Origin[™] NPU Engine

- Revolutionary packet-based architecture reduces design and implementation complexity while improving real-world performance
- Hardware and software are designed together
 - Solves complex software in hardware compiler codesigned and optimized for unique architecture
- Just-in-time memory management implements a unified compute pipeline
- Expedera-optimized for customer use case(s)

0.003 ~ 128 TOPS

Single core performance, PetaOps with multi-core 18 TOPS/W ResNet50 INT8 in TSMC 7nm @ 1GHz No sparsity, compression, or pruning applied, though supported

70-90%

Average sustained NPU utilization across common networks

Architectural Building Blocks

Decoupled building blocks, optimized for workload needs

- Scalable **matrix math processors** (MMP) perform weight multiplication.
- Vector scalar processing (VSP) logic handles memory access, data reshaping, and some vector operations.
- **VSP memory** provides storage for input, output, and intermediate activations.
- Accumulation buffering and quantization logic happen in **partial summation** (PSUM) blocks.
- Orchestrating operations is a single sequence/scheduler processor (SSP) working with compiler software for a unique packet-based sequencing approach.

Packets: Superior Memory Optimization

- Expedera's packet-based architecture requires minimal external memory (weights only) for the networks shown
 - Higher throughput
 - Lower system power
 - Better privacy and security
- Uniformly spread-out bandwidth
 - Sustained utilization
 - Tolerance towards latency variations

Bandwidth Requirements @ 0.5MB of NPU Memory

Customer-provided, Field-proven Results

and efficiency stand out against competitors'. The chart shows Res-Net-50 v1.0 images per second (IPS) at best batch size versus typical power (W). (Source: vendors and The Linley Group estimates)

"Expedera Redefines AI Acceleration for the Edge" - TechInsights (Linley) Microprocessor Report, April 2021

FPS Comparison					
With Expedera Competition					
Power Consumption (mW)					
With Expedera Competition					

Customer-provided data, 4K video rate low light denoising: **20X faster throughput using less than half the power**

embedded

SUMME

Best Practices for Always-sensing Designs

Little NPUs achieve necessary performance within strict power and area budgets; don't settle for the big NPU

Memory management

Keep all data within the alwayssensing subsystem, extending battery life while enhancing security & privacy

Resources

Summit & Alliance Resources

- Visit us at booth #319
- Alliance website
 - <u>https://www.edge-ai-</u> vision.com/companies/expedera/

Expedera Resources

- Company Website
 - <u>http://www.expedera.com/</u>
 - White papers, technical briefs, webinars, other
- Pre-silicon PPA Estimations
 - Want cycle-accurate PPA numbers for your use case(s) well before silicon?
 - info@expedera.com
- Contact us directly
 - info@expedera.com