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Executive Summary

• Next generation 
AI and CV 
applications 
require higher 
than ever  
computing power.

• Edge devices use 
multi-core 
processors to 
deliver high 
performance.

• However, 
developers must 
efficiently map 
their applications 
onto the multiple 
cores, which can 
be difficult.

• CEVA has 
introduced the 
Architecture 
Planner tool as a 
new element of 
CDNN,  CEVA’s 
comprehensive AI 
SDK.

• In this talk, we’ll 
show how the 
Architecture 
Planner tool 
analyzes the 
network model 
and maps the 
workload onto the 
multiple cores in 
an efficient 
manner.

• We’ll explain key 
techniques used 
by the Tool, 
including 
symmetrical and 
asymmetrical 
multi-processing 
paradigms.
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NeuPro-M – A Family of AI Processors
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CDNN Open Development Platform
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CDNN Toolchain Workflow

1 Neural Network Training Optimizer Tool

Real-Time Multi-Network Inferencing4 CDNN Offline Optimization3

2 Architecture Planner Tools
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CDNN Multi-Engine Features

• CDNN supports the following parallel processing paradigms to leverage the 
compute power of multi-engine device and maximize overall system 
throughput

• Partitioning by tiles  different tiles, shared weights. This is efficient in first 

layers where input maps are large

• Partitioning by output maps  same tile, different weights

• Partitioning by sub-graphs  different sub-graphs are assigned to engines

• Pipeline partitioning  sequence of nodes assigned to engine

• Batch partitioning  same network, different input image

• Partitioning by networks  different network per engine
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Quad-Engine Core – Segmentation Network 
Data Flow
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Parallel Processing Paradigms
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CDNN Architecture Planner
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• Given graph G=(V,E)

• Given input and output nodes (a,u)

• Given cost function f(v) for each node

• We have multiple paths from a to u

• Parallel execution is appropriate in this 
case

• We will attempt to parallelize the model 
across 3 DSPs

CDNN Multi-Engine Offline Algorithm

10



a

c b

g

u

d

n

h

o

e

j

p

f

k

q

l m

r

s t

0

1

2

3

4

5

6

Dsp1 Start finish Dsp2 Start finish Dsp3 Start finish

a 0 4

4

5 7

10

3

4
6

444

4

4

4

4

4

4

13

3

19

1

CDNN Multi-Engine Offline Algorithm
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CDNN Offline Algorithm – Layer 1
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CDNN Offline Algorithm – Layer 2
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CDNN Offline Algorithm – Layer 3
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Single DSP inference time is the sum of all nodes:
4+5+7+10+9*4+3+13+13+19+1 = 111

CDNN Offline Algorithm – Finish
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• Algorithm performs load balancing 
across sub-graphs to minimize idle 
time of DSPs

• Parallel execution is appropriate in 
this case

• We will attempt to parallelize the 
model across 1, 2, 3, and 4 DSPs 
and compare the results

• The algorithm implements 
backtracking traversal of the graph 
to limit the computational 
complexity of the process

Example: Inception_v3

19



• Backtracking algorithm 
produced the best results

• The bar chart compares the 
performance in cycles of a 
single DSP vs two, three, 
and four DSPs

Number of DSP Units

E
x
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s

3,568,884

2,166,036
2,013,499 2,001,637

Results: Inception_v3
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DSP1 DSP2 DSP3

Time

• Many neural networks comprise 
a long thread of nodes that are 
computed one after the other

• Parallelization is difficult 
because there are no nodes 
that can run in parallel

• A pipeline approach is adequate  
in this case

• We will attempt to parallelize 
the model across 3 DSPs

• To minimize idle time, the 
algorithm needs to balance the 
load across DSPs

CDNN Multi-engine Pipeline Execution
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• Given Graph G=(V,E)

• The resultant frame rate equals to 
1/CYCLE_COUNT of the slowest 
section of the pipeline

Example: Mobilenet_v2
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• The pipeline algorithm 
produced the best result 
with 4 DSPs

Number of DSP Units
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43,659

Results: Mobilenet_v2
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• We introduced CEVA NeuPro-M multi-engine processor for AI and CV 
applications.

• These cores are complemented by CDNN for multi-engine, a highly 
optimized graph compiler and runtime framework.

• We presented the results of sub-graph and pipeline algorithms, which were 
developed at CEVA to distribute the network inference workload across 
multiple engines.

• Surprisingly, even for Inception_V3, the pipeline approach outperformed 
the backtracking technique.

• Further testing would need to be carried out to confirm the initial results.

Summary and Conclusions
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Resources 

For more information, please visit our booth, #420

www.ceva-dsp.com 
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