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« Next generation « Edge devices use * CEVA has « In this talk, we'll « We'll explain key
Al and CV multi-core introduced the show how the techniques used
applications processors to Architecture Architecture by the Tool,
require higher deliver high Planner tool as a Planner tool including
than ever performance. new element of analyzes the symmetrical and
computing power. « However, CDNN, CEVA's network model asymmetrical
developers must comprehensive Al and maps the multi-processing
efficiently map SDK. workload onto the paradigms.
their applications multiple cores in
onto the multiple an efficient
cores, which can mannetr.
be difficult.
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A Full System Solution
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CDNN Open Development Platform vision
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CDNN Toolchain Workflow
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CDNN Multi-Engine Features vision
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» CDNN supports the following parallel processing paradigms to leverage the
compute power of multi-engine device and maximize overall system
throughput

* Partitioning by tiles - different tiles, shared weights. This is efficient in first
layers where input maps are large

« Partitioning by output maps > same tile, different weights

« Partitioning by sub-graphs - different sub-graphs are assigned to engines
* Pipeline partitioning - sequence of nodes assigned to engine

« Batch partitioning - same network, different input image

« Partitioning by networks - different network per engine

CEVA
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ParaIIeI Processing Paradigms
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Inputs:

»  Network model
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Engine 0 — network 1

Engine 1 — network 1

. Engine 2 — network 1
O Engine 3 — network 1

Pipeline: first
node processes
tile n, while the
rest of sub-
sequence still

- processes tile n-1

Partition by
subgraphs:
engines process
nodes in
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CDNN Multi-Engine Offline Algorithm

* Given graph G=(V,E)

* Given input and output nodes (a,u)

* Given cost function f(v) for each node
* We have multiple paths from a to u

* Parallel execution is appropriate in this
case

* We will attempt to parallelize the model
across 3 DSPs
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CDNN Offline Algorithm — Layer 1 vision
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CDNN Offline Algorithm — Layer 2 vision
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CDNN Offline Algorithm — Layer 4 vision
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CDNN Offline Algorithm — Layer 6
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CDNN Offline Algorithm — Finish vision
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Dsp3 | Start | finish

----- 0

C 4

d 13
f 13 17
k 17 21
h 21 25
0 25 29
S 29 41

Total inference time for 3 DSPs: 47
CEVA Single DSP inference time is the sum of all nodes:
44+5+7+104+9*%4+3+13+13+19+1 = 111




Example: Inception_v3

* Algorithm performs load balancing
across sub-graphs to minimize idle
time of DSPs

* Parallel execution is appropriate in
this case

* We will attempt to parallelize the
model across 1, 2, 3, and 4 DSPs
and compare the results

* The algorithm implements
backtracking traversal of the graph
to limit the computational
complexity of the process
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Graph: with_residual_break_profile_inception_v3

- Algorithm: BacktrackingTasksPartitioner
e

* Backtracking algorithm 35 3,568,884
produced the best results
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CDNN Multi-engine Pipeline Execution
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Many neural networks comprise
a long thread of nodes that are
computed one after the other

Parallelization is difficult
because there are no nodes
that can run in parallel

A pipeline approach is adequate
in this case

We will attempt to parallelize
the model across 3 DSPs

To minimize idle time, the
algorithm needs to balance the
load across DSPs

21



Example: Mobilenet_v2

Given Graph G=(V,E)

The resultant frame rate equals to
1/CYCLE_COUNT of the slowest
section of the pipeline
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Graph: mobilenet_v2_without_residual
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Summary and Conclusions vision
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« We introduced CEVA NeuPro-M multi-engine processor for AI and CV
applications.

 These cores are complemented by CDNN for multi-engine, a highly
optimized graph compiler and runtime framework.

« We presented the results of sub-graph and pipeline algorithms, which were
developed at CEVA to distribute the network inference workload across
multiple engines.

« Surprisingly, even for Inception_V3, the pipeline approach outperformed
the backtracking technique.

* Further testing would need to be carried out to confirm the initial results.

CEVA



Resources

For more information, please visit our booth, #420

WWW.ceva-dsp.com
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