2023 embedded VISION SUMMIT

Efficiently Map AI and Vision Applications onto Multi-Core AI Processors Using CEVA's Parallel Processing Framework

Rami Drucker SW Architect CEVA

Executive Summary

 Next generation AI and CV applications require higher than ever computing power.

- Edge devices use multi-core processors to deliver high performance.
- However, developers must efficiently map their applications onto the multiple cores, which can be difficult.
- CEVA has introduced the Architecture Planner tool as a new element of

•

- new element of CDNN, CEVA's comprehensive AI SDK.
- In this talk, we'll show how the Architecture Planner tool analyzes the network model and maps the workload onto the multiple cores in an efficient manner.
- We'll explain key techniques used by the Tool, including symmetrical and asymmetrical multi-processing paradigms.

NeuPro-M – A Family of AI Processors

A Full System Solution

CDNN Open Development Platform

embedded

VISION

CDNN Toolchain Workflow

CDNN Multi-Engine Features

- CDNN supports the following parallel processing paradigms to leverage the compute power of multi-engine device and maximize overall system throughput
 - Partitioning by tiles → different tiles, shared weights. This is efficient in first layers where input maps are large
 - Partitioning by output maps \rightarrow same tile, different weights
 - Partitioning by sub-graphs \rightarrow different sub-graphs are assigned to engines
 - Pipeline partitioning \rightarrow sequence of nodes assigned to engine
 - Batch partitioning \rightarrow same network, different input image
 - Partitioning by networks \rightarrow different network per engine

Quad-Engine Core – Segmentation Network Data Flow

embedded VISION

SUMMIT

Parallel Processing Paradigms

embedded

CDNN Architecture Planner

9

CDNN Multi-Engine Offline Algorithm

- Given graph G=(V,E)
- Given input and output nodes (a,u)
- Given cost function f(v) for each node
- We have multiple paths from a to u
- Parallel execution is appropriate in this case
- We will attempt to parallelize the model across 3 DSPs

CDNN Multi-Engine Offline Algorithm

Dsp1	Start	finish	Dsp2	Start	finish	Dsp3	Start	finish
а	0	4						

CEVA

Dsp1	Start	finish	Dsp2	Start	finish	Dsp3	Start	finish
а	0	4		0	4		0	4
n	4	14	b	4	11	с	4	9
е	14	18	g	11	14	d	9	13
j	18	22	1	14	20	f	13	17
			m	20	24	k	17	21
						h	21	25

CEVA

CEVA

h

S

CEVA

CEVA

CDNN Offline Algorithm – Finish

Dsp1	Start	finish	Dsp2	Start	finish	Dsp3	Start	finish
а	0	4		0	4		0	4
n	4	14	b	4	11	С	4	9
е	14	18	g	11	14	d	9	13
j	18	22	T	14	20	f	13	17
р	22	26	m	20	24	k	17	21
q	26	30	r	24	27	h	21	25
	30	46	t	27	46	0	25	29
u	46	47				S	29	41

CEVA

Example: Inception_v3

- Algorithm performs load balancing across sub-graphs to minimize idle time of DSPs
- Parallel execution is appropriate in this case
- We will attempt to parallelize the model across 1, 2, 3, and 4 DSPs and compare the results
- The algorithm implements backtracking traversal of the graph to limit the computational complexity of the process

19

Results: Inception_v3

- Backtracking algorithm produced the best results
- The bar chart compares the performance in cycles of a single DSP vs two, three, and four DSPs

CDNN Multi-engine Pipeline Execution

embedded

- Many neural networks comprise a long thread of nodes that are computed one after the other
- Parallelization is difficult because there are no nodes that can run in parallel
- A pipeline approach is adequate in this case
- We will attempt to parallelize the model across 3 DSPs
- To minimize idle time, the algorithm needs to balance the load across DSPs

21

Example: Mobilenet_v2

Given Graph G=(V,E)

CEVA

 The resultant frame rate equals to 1/CYCLE_COUNT of the slowest section of the pipeline

Results: Mobilenet_v2

embedded VISION SUMMIT

 The pipeline algorithm produced the best result with 4 DSPs

Graph: mobilenet_v2_without_residual

Summary and Conclusions

- We introduced CEVA NeuPro-M multi-engine processor for AI and CV applications.
- These cores are complemented by CDNN for multi-engine, a highly optimized graph compiler and runtime framework.
- We presented the results of sub-graph and pipeline algorithms, which were developed at CEVA to distribute the network inference workload across multiple engines.
- Surprisingly, even for Inception_V3, the pipeline approach outperformed the backtracking technique.
- Further testing would need to be carried out to confirm the initial results.

For more information, please visit our booth, #420

www.ceva-dsp.com

