
How Transformers Are 
Changing the Nature of 
Deep Learning Models

Tom Michiels

Principal System Architect

Synopsys



• The surprising rise of transformers in vision  

• The structure of attention and transformer

• Transformers applied to vision

• Why transformers are here to stay for vision
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CNNs Dominating Vision Tasks Since 2012

2012 ... 2014 2015 2016 2017 2018 2019 2020 2021  2022

AlexNet VGG ResNet MobileNet V1 MobileNet V2
EfficientNet

MobileNet v3

Image Classification
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2012 ... 2014

AlexNet VGG ResNet MobileNet V1 MobileNet V2
EfficientNet

MobileNet v3

RCNN
FRCNN

SSD
YOLOV2 Mask RCNN YoloV3

YoloV4/V5

EfficientDet

Object Detection
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AlexNet VGG ResNet MobileNet V1 MobileNet V2
EfficientNet

MobileNet v3

RCNN
FRCNN

SSD
YOLOV2 Mask RCNN YoloV3

YoloV4/V5

EfficientDet

FCN
DeepLab

SegNet DSNet

Semantic Segmentation
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2012 ... 2014

AlexNet VGG ResNet MobileNet V1 MobileNet V2
EfficientNet

MobileNet v3

RCNN
FRCNN

SSD
YOLOV2 Mask RCNN YoloV3

YoloV4/V5

EfficientDet

FCN
DeepLab

SegNet DSNet

DeeperLab
PFPN

EfficientPS

YoloP

Panoptic Vision
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CNNs Dominating Vision Tasks Since 2012



A Decade of CNN Development…

Residual 
Connection
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Inverted Residual 
Blocks



Beaten in Accuracy by Transformers
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Is    this   the  real  life    ?     Is   this   just   fantasy   ?

Transformer, a model designed for natural 
language processing

… without any modifications applied to image patches, 
beats the highly specialized CNNs in accuracy



Accuracy Records on ImageNet
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State-of-the-art Top-1 Accuracy ImageNet, entering a new era?
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Transformers in Other Vision Tasks
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Semantic Segmentation on ADE20K Object Detection on COCO test-dev
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36.2

State-of-the-Art of other Vision tasks are dominated by transformers 
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But These State-of-the-Art Models Are Huge!
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Is the state-of-the-art really relevant for embedded applications? 
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Compact Transformers versus CNNs
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source MobileViTv3 https://arxiv.org/abs/2209.15159

Number of FLOPs

https://arxiv.org/abs/2209.15159


Mobile ViT: Small Mobile   
(Paper by Apple, March 2022) 

https://arxiv.org/pdf/2110.02178.pdf

2.3X
FLOPs

+1.5%
Accuracy

2.4X
Time

7.9X
Time

Inference Time (ms)

CPU/NNE = 8.1X

CPU/NNE = 2.5X

• Observations in paper

– On embedded devices (iPhone) MobileViT is slower than CNN based methods

– Because the AI accelerator on iPhone is not as optimized for transformers as it is for CNNs

– The authors expect that future AI accelerators will better support transformers

0.7X
Model

Size
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https://arxiv.org/pdf/2110.02178.pdf


The Structure of Attention 
and Transformer
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• Attention is all you need!(*)

• Bidirectional Encoder Representations from 
Transformers

• A transformer is a deep learning model that uses 
attention mechanism

• Transformers were primarily used for natural 
language processing

• Translation

• Question answering

• Conversational AI

• Successful training of huge transformers

• MTM, GPT-3, T5, ALBERT, RoBERTa, T5, Switch

• Transformers are successfully applied in other 
application domains with promising results for 
embedded use   

Bert and Transformers

(*) https://arxiv.org/abs/1706.03762
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Convolutions, Feed Forward, and 
Multi-Head Attention
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1x1 
Convolution

Add

3x3 
Convolution

Add

CNNTransformer

• The feed forward layer of the transformer 
is identical to a 1x1 convolution

• In this part of the model, no information 
is flowing between tokens/pixels

• Multi-head attention and 3x3 convolution 
layers are the layers responsible for 
mixing information between tokens/pixels



Convolutions as Hard-Coded Attention

Both Convolution and Attention Networks mix in features of other tokens/pixels

Convolution Attention

Convolutions mix in features from tokens based on fixed spatial location
Attention mix in features from tokens based on learned attention
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The Structure of a Transformer: Attention

Multi-Head Attention

Attention: Mix in features of other tokens

Is    this   the   real   life    ?

Is
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The Structure of a Transformer: Attention

Multi-Head Attention

Attention: Mix in features of other tokens

© 2023 Synopsys 19



The Structure of a Transformer: Attention

NxN
matrix

N: number of tokens

Multi-Head Attention
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+

The Structure of a Transformer: Embedding

Embedding of input tokens and the positional encoding

Is    this   the  real  life    ?     Is   this   just   fantasy   ?

embedding vectors

position encoding

elementwise addition
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Applying Transformers to Vision Tasks
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Vision Transformers (ViT/L16 or ViT-G/14)

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale(*)

Image is split into tiles

(*) https://arxiv.org/abs/2010.11929

Linear Projection 

Multi-Head Attention

Feed Forward

Add & Norm

Add & Norm

+

Pixels in a tile are 
flattened into tokens (vectors) 
that feed in the transformer

N 
x

Vision transformers are best-
known method for image 
classification

They are beating convolutional 
neural networks in accuracy
and training time, but not in 
inference timePosition encoding
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https://arxiv.org/abs/2010.11929


Vision Transformer   Increasing Resolution

Linear Projection 

Multi-Head Attention

Feed Forward

Add & Norm

Add & Norm

+

N 
x

Position encoding

Attention matrix scales quadratically 
with the number of patches

N x N matrix
Where N = the number 

of tokens/patches
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Swin Transformers

Hierarchical Vision Transformer Using Shifted Windows (*)

Adaptation makes transformers 
scale for larger images:
1. Shifted window attention
2. Patch-merging

State of the art for
• Object detection (COCO) 
• Semantic segmentation 

(ADE20K) 

(*) https://arxiv.org/abs/2103.14030
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Patch-Merging

https://arxiv.org/abs/2103.14030


Action Classification with Transformers 

Video Swin Transformer

https://arxiv.org/abs/2106.13230

Video Swin Transformers extend the (shifted) 
window to three dimensions (2D spatial + time)

Today’s state of the art on Kinetics-400 and 
Kinetics-600
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Object Detection with Transformers 
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End-to-End Object Detection with Transformers (Facebook 2020)

https://arxiv.org/abs/2005.12872

DETR uses a CNN (ResNet-50) as a backbone
Off-the-shelf transformer encoder and decoder
Trained Object Queries retrieve possible candidates for objects

https://arxiv.org/abs/2005.12872


Training Vision Transformers
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• More data required to train a transformer to overcome the lack 
of inductive bias of convolution

• Vision Transformers take significantly less training time than 
comparable CNN’s

• Self-supervised Pre-Training for Vision Transformers 

“cat”

Supervised learning Self-Supervised learning



Why Attention and Transformers 
are Here to Stay for Vision



Inductive Bias of CNNs 

Recognizing Cat Fur Recognizing a whole Cat

The inductive bias of a convolution, is more helpful 
for recognizing low level features like cat fur than for 
recognizing more complex objects like cats

Convolution use the same weights 
for processing every pixel
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Inductive Bias of CNNs and Sensor Fusion
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Camera front Left Camera Front Camera Front Right Lidar TOP

• Many real-life applications use multiple sensors
• Transformers excel in sensor fusion
• The inductive bias of CNNs designed for grid-like 

structures limits their effectiveness in sensor fusion

Fused in a single object 



Panoptic Segmentation Using CNNs

Panoptic Segmentation combines predictions from both instance and semantic segmentation in a unified output

Image source: https://www.barnorama.com/wp-content/uploads/2016/12/03-Confusing-Pictures.jpg
Model Used: Detectron2 - COCO-PanopticSegmentation/panoptic_fpn_R_101_3x

© 2023 Synopsys
32

P
a
n
o
p
ti
c

F
P
N

_
R
e
sN

e
t1

0
1
_
3
x

https://www.barnorama.com/wp-content/uploads/2016/12/03-Confusing-Pictures.jpg


Multimodal Transformers

LLaVA Language and 

© 2023 Synopsys 33

User: What is unusual about this image? 

LLaVA: The unusual aspect of the image is that 
a man is ironing clothes on the back of a yellow 
minivan while it is on the road. This is an 
unconventional and unsafe place to perform 
such an activity, as ironing clothes typically 
requires a stable surface and appropriate 
equipment. Ironing clothes in a moving vehicle 
could lead to potential hazards for both the 
person doing the ironing and other road users. 
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https://arxiv.org/pdf/2304.08485.pdf

https://arxiv.org/pdf/2304.08485.pdf


How Much Intelligence Do We Need?
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Panoptic Segmentation Multi-modal language/vision 

How much (artificial) intelligence is required for real-life applications?

User: What is unusual about this image? 

LLaVA: The unusual aspect of the image is 
that a man is ironing clothes on the back of 
a yellow minivan while it is on the road. This 
is an unconventional and unsafe place to 
perform such an activity, as ironing clothes 
typically requires a stable surface and 
appropriate equipment. ….



• Attention-based networks outperform CNN-only networks on accuracy

• Highest accuracy required for high-end applications

• Models that combine vision transformers with convolutions are more efficient at 
inference

• Examples: MobileViT(*), CoAtNet(**)

• Real-life vision: demands beyond CNN inductive bias

• Scene understanding needs common-sense knowledge that may not be 
learned by vision alone

• Sensor fusion: complex geometrical mappings are ill-suited for CNN bias

Why Transformers Are Here to Stay in Vision

(*) https://arxiv.org/abs/2110.02178
(**) https://arxiv.org/abs/2106.04803v2
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• Transformers are deep learning models primarily used in the field of NLP

• Transformers lead to state-of-the-art results in other application domains of deep 
learning like vision and speech

• They can be applied to other domains with surprisingly little modifications

• Models that combine attention and convolutions outperform convolutional 
neural networks on vision tasks, even for small models 

• Transformers and attention for vision applications are here to stay

• Real world applications require knowledge that is not easily captured with 
convolutions

Summary
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Resources

Visit Synopsys Booth 309

• Partner demo: Visionary.ai True Night Vision SW ISP

• Meet with Synopsys executives and experts

• Discuss emerging neural network architectures like 

transformers and vision/object detection for safety-critical 

automotive SoCs

• Learn about the latest in practical technology to bring 

visual intelligence into embedded systems, mobile apps, 

cars, and PCs

Resources

ARC NPX6 NPU IP 

www.synopsys.com/npx 
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