## 2023 embedded VISION SUMMIT

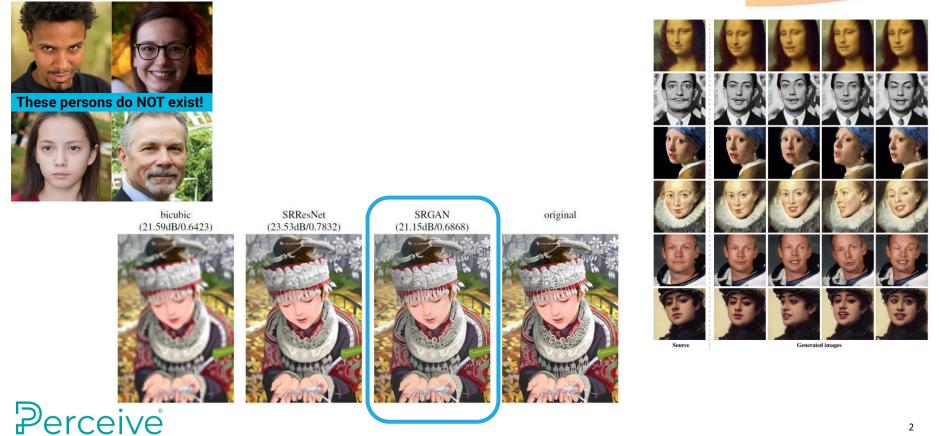
Making GANs Much Better, or If at First You Don't Succeed, Try, Try a GAN

Steve Teig CEO Perceive



#### **GANs: Generative Adversarial Networks**





## **GANs: Generative Adversarial Networks**



- Generative
  - Produces synthetic output from only a provided, typically random, input
- Network
  - Deep neural network
- Adversarial
  - <u>Should</u> mean "challenging": examples that are extreme in some way
  - Does mean "produced by a competitive game": misleading advertising...

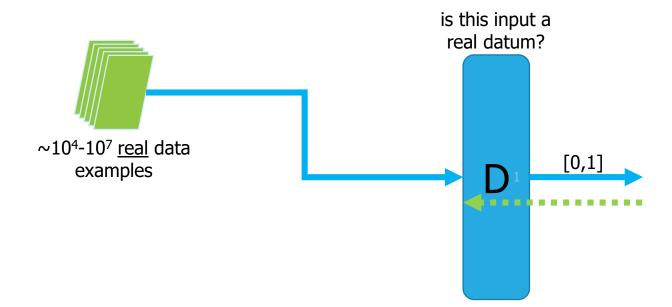
### Why does anyone care about GANs?



- Data is precious: **no one** has very much of it
  - $\sim 4x10^{2,500,000}$  possible 4K images
- Can we generate synthetic data that is highly realistic?
  - Enable sophisticated augmentation: avoid overfitting
  - Enable compelling "fakes": super-resolution, de-noising, art, deepfakes, etc.
- Can we use deep learning to generate realistic, synthetic data?
  - Initially proposed by Goodfellow et al. in 2014; >50K references since then!
- Try to make synthetic distribution match real distribution

## **ABCs of GANs: discriminator network, D**

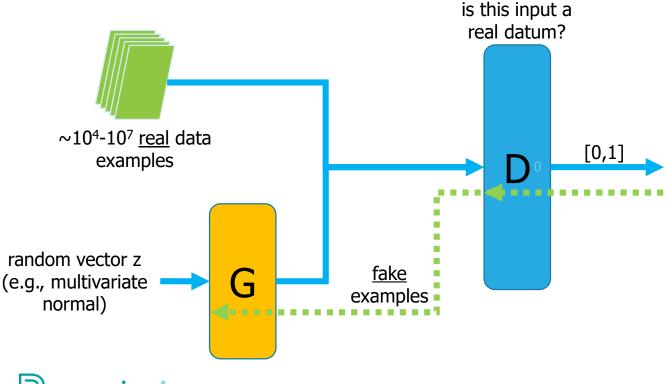






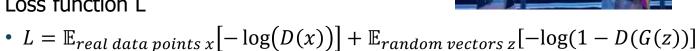
## **ABCs of GANs: generator network, G**





### **ABCS** DEFS of GANS

- GAN "plays a game" where G and D fight
  - Tries to achieve (Nash) equilibrium
- Loss function L



- Encourage discriminator D to return 1 for real data points
- Encourage discriminator D to return 0 for fake data points
- Encourage generator G to learn to fool D; encourage D not to be fooled
- Sounds reasonable, but...

erceive

• Underlying reasoning is simplistic  $\rightarrow$  can do much better







is this input real?

[0,1]

## **Thinking more critically about GANs**

embedded VISION SUMMIT

8

- Why try to match the "distribution" of the labeled input?
  - Copy its biases?!
  - If training set has more "dogs on lawns" than "dogs on streets", should you copy that?
  - If more white than Black people in your training set, should the GAN copy that, too?



## Thinking more critically about GANs, cont.

- If D seeks a 1 for each training item on average...
  - Then underrepresented features will be ignored to protect the majority!
- If G seeks a 1 for each generated item <u>on average</u>...
  - Then it will focus on "easy" foolers vs. hunting for <u>all</u> foolers
- Is it more important that D get 1's for real data or 0's for fake data?
  - Mainstream GANs treat both as equally important. Why?



embedded

## A trio of oversights



• GAN loss function is

- $L = \mathbb{E}_{real \ data \ points \ x} \left[ -log(D(x)) \right] + \mathbb{E}_{random \ vectors \ z} \left[ -log(1 D(G(z))) \right]$
- 1) First term minimizes D's average surprise that real data are ... real
  - Pushes D towards 1 for real data points, but...
  - Small minority of real data points can miss by a mile
- 2) Second term minimizes D's <u>average</u> surprise that *fake* data are fake
  - Pushes D towards 0 for fake data points, but...
  - Can get away with "easy" fakes: no driver towards variety





## A trio of oversights, cont.



- GAN loss function is
  - $L = \mathbb{E}_{real \ data \ points \ x} \left[ -\log(D(x)) \right] + \mathbb{E}_{random \ vectors \ z} \left[ -\log(1 D(G(z))) \right]$
- 3) L treats the two terms as equally important
  - Mislabeling a real picture vs. mislabeling a fake picture
  - Better? Worse? Equally bad?
  - Why do you think so?
- ~10<sup>6</sup> real images and ~10<sup>2,500,000</sup> possible (4K) images  $\rightarrow$  LOTS of ways to generate compelling fakes

## If at first, you don't succeed... try, try a GAN



- 1<sup>st</sup> term: try to make sure D <u>never</u> fails to identify authentic data points
  - $\mathbb{E}_{real \ data \ points \ x} \left[ -\log(D(x)) \right] \Rightarrow L_1 = \underline{Min}_{real \ data \ points \ x} \left[ -\log(D(x)) \right]$
  - Continuously differentiable approximation to Min: e.g., LSE
- 2<sup>nd</sup> term: try to make sure D is <u>never</u> fooled by any synthetic data point
  - I.e., that G searches distribution of z's to get D to make its biggest mistake
  - $\mathbb{E}_{random \ vectors \ z}[-log(1 D(G(z))] \Rightarrow L_2 = \underline{Min}_{random \ vectors \ z}[-log(1 D(G(z))]]$
- How <u>should</u> the terms be combined? Can we find an underlying principle?!
  - $L_1 + L_2$ ?  $L_1 + \alpha * L_2$ ? What's  $\alpha$ ?
  - f(L<sub>1</sub>,L<sub>2</sub>)? What's f?

#### 4K super-resolution

Vs. Original ESRGAN LPIPS<sup>1</sup> 0.15  $\rightarrow$  0.08 PSNR<sup>1</sup> 25.4  $\rightarrow$  29.6 SSIM<sup>1</sup> 0.73  $\rightarrow$  0.89





- GANs are based on a powerful insight
  - Synthesis of realistic, fake data by "fooling" training... and people!
- GANs are used widely and are influential
- Unfortunately, mainstream GANs are not "adversarial"
  - Poorly chosen loss function creates severe, unwanted biases
- We can fix that by *minimizing maximum surprise* instead
  - Average accuracy is almost never the right thing for ML
- Used to create state-of-the-art super-resolution at 30 fps with 175x lower power than NVIDIA

## **Additional Resources**



#### Resources

Survey of GANs in computer vision: https://arxiv.org/abs/1906.01529

Original GAN paper: https://papers.nips.cc/paper/5423-generativeadversarial-nets.pdf

ESRGAN super-resolution paper: <a href="https://arxiv.org/abs/1809.00219">https://arxiv.org/abs/1809.00219</a>

Perceive: <u>https://www.perceive.io</u>

#### **2023 Embedded Vision Summit**

- Women in Vision Reception: Tuesday, 6:30-7:30 PM Exhibit Floor ET-1
- Perceive exhibit (booth #107)