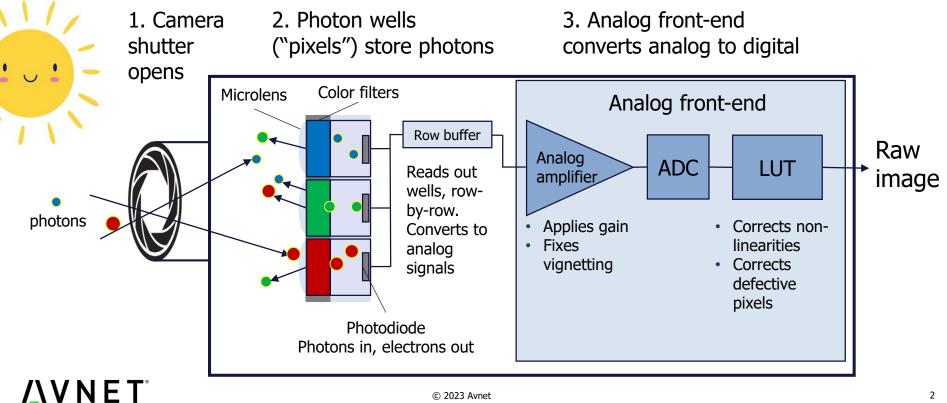
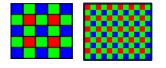
2023 embedded VISION SUMMIT


Selecting Image Sensors for Embedded Vision Applications: Three Case Studies

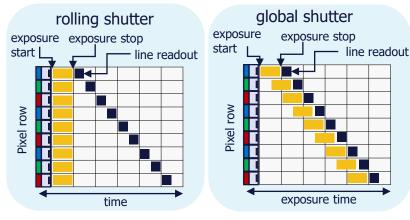
Monica Houston Manager, AI / ML Team Avnet

/\VNET[®]

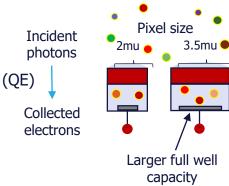
What does an image sensor do?



© 2023 Avnet


Image sensor specifications

Resolution


Shutter type and speed

Color Filter Arrays (CFAs)

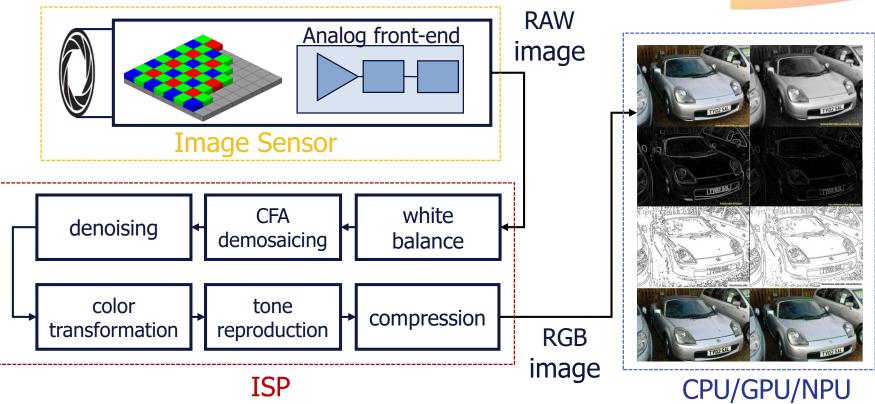
Signal to Noise Ratio (SNR) & Dynamic Range

Image sensor specifications (continued)

Other specs:

- Near Infrared Optimized (NIR)
- Chief Ray Angle (CRA) vi
- Field of View (FOV)
- Defective Pixels
- Pixel size / full well

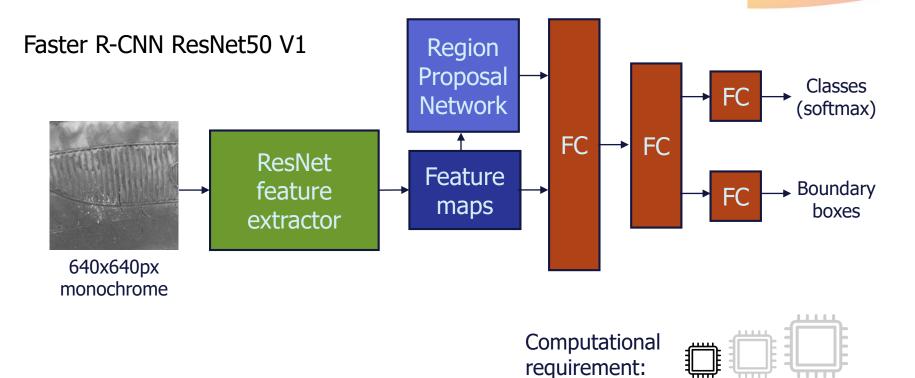
Other things to consider:


- Image Signal Processor (ISP)
- Interfaces
- Compression
- Sensor size
- Power consumption (heat)
- Lens
- Price
- Lead time
- Support

/\ V N E T[°]

embedded

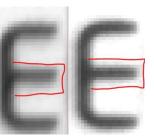
Why choosing the right image sensor is important



Case Study #1: Tire Defect Detection

/\VNET[°]

The model



Monochrome sensors vs color sensors

Monochrome pros:

- Higher quantum efficiency
- Better features:
 - Reduced noise
 - Improved contrast
- Increased speed
- Lower cost

color monochrome image image

Can you just use a color image sensor and convert to greyscale?

Some models do better with color

oxidation detection

navigation

embedded

SUMMI

clock or stove?

tiger or snow leopard?

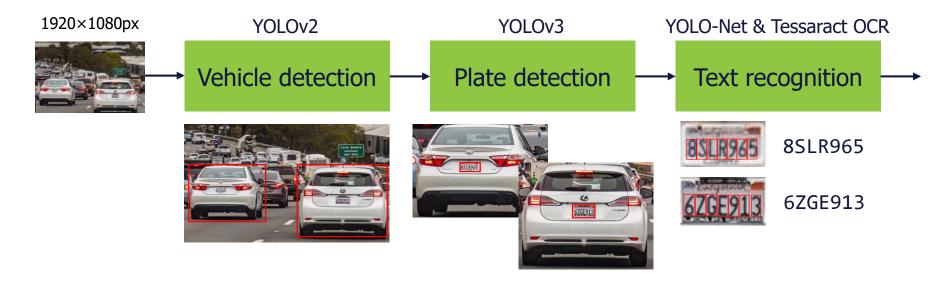
Case study #1 summary

When to consider using a monochrome image sensor:

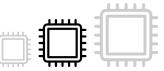
- Model accuracy doesn't depend on color information
- Low-light conditions
- Intensity-based features such as texture and edges are important
 - Bar code scanning, OCR, defect detection
- Low cost requirements

ΛΥΝΕΤ[°]

• Limited computational ability


Assess:

- Is your model architecture designed for monochrome input?
- Is color important at any step in the application?
 - E.G. color might not be important for your object detection but is relevant for your classification


Case Study #2: License Plate Recognition

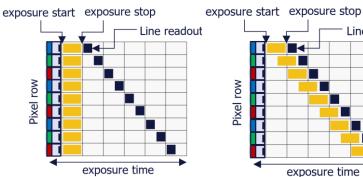
The models

Shutter type and speed

Rolling shutter pros:

- Lower noise
- Lower cost
- Typically lower power

Global shutter pros:


- Higher frame rates
- No motion distortion
- Better low-light quality
- Larger FOV

Global shutter

Rolling shutter

Line readout

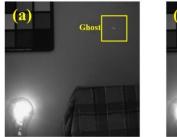
High frame rates

- 1/60, 1/120, 1/240...
- Increased accuracy
 - Enable more detections
 - More likely to capture at least one clear image
- Reduced motion blur

How fast must frame rate be to capture a car going 100 mph?

/\ V N E T[°]

Variable light conditions



Measurement	Definition	Good range
High dynamic range (HDR)	Includes temporal dark noise	120 dB – 140 dB
Signal to noise ratio (SNR)	Includes temporal dark noise, shot noise	40+ dB
ADC resolution (luminance)	Intensity of light captured	12-bit+
Near-infrared sensitivity (NIR)	Sensitivity to NIR wavelengths	650 nm to 2500 nm
Shutter efficiency ratio	Time all pixels exposed to light / shutter speed	90%+

Higher **shutter efficiency ratio** = less **ghosting** (light or motion artifacts) Rejects undesired light (outdoors)

Case study #2 summary

For moving objects, consider:

- Global shutter
- Frame rate

For varied lighting conditions, including glare, overcast, strobing, and night, consider:

- HDR
- SNR
- ADC resolution
- NIR

ΛΥΝΕΤ[°]

Assess:

- Is shutter speed fast enough to prevent motion blur but slow enough to let in enough light?
- Power requirements for HDR and higher frame rates?
- Color or monochrome sensor?

embedded

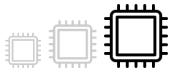
SUMMI

Case Study #3: Crowd Counting

/\VNET[°]

The model

2048×1080 px



256 512 512 3x3 conv, 256 3x3 conv, 512 3x3 conv, 128 3x3 conv, 128 3x3 conv, 256 3x3 conv, 512 3x3 conv, 64 3x3 conv, 64 1x1 conv pool/2 pool/2 pool/2 3x3 conv, 7 3x3 conv, 3x3 conv, size: 1 size: 1/2 size: 1/4 size: 1/8 dilation 2

CSRNet

10 layers from VGG-16

Computational requirement:

High resolution images

Spatial resolution = (feature size) / (minimum resolution to find an edge)

 $15cm^* / 4px^* = 3.75cm px$

*average diameter of a human head is 15cm

*minimum of 3-4px in order to find an edge

Image sensor resolution = (FOV) / (spatial resolution)

 $155m / 3.75cm px = 4,133px^*$ wide

*This image is 5758px wide

embedded

15cm

Case study #3 summary

When to consider high resolution image sensors:

- Large field of view is needed
 - Multiple cameras are not feasible
- Image pipeline requires cropping, resizing, or zooming
- Computation power, memory, and data interfaces are adequate

Assess:

- How much resolution can camera interfaces handle at required speed?
- Are you able to collect or find a dataset with the desired resolution?

Tips and Tricks for high resolution input:

- Downsampling
- Patch-based training
- Try monochrome input
- Trade-off with frame rate
- Trade-off with pixel size

/\ V N E T[°]

Conclusion

- 1. Different embedded vision applications require different image sensors
- 2. Choice of image sensor has a significant impact on the accuracy, power, and computational cost of your vision system
- 3. Choosing the right image sensor will require trade-offs

Consider:

- What features of the input image are most important?
 - Edges, textures, hue, etc.
- Lighting conditions
- Motion and speed (of subject or camera)
- Size of required field of view
- Size of ROI or detail

/\ V N E T[°]

Image sensor resources

Specifications

- Understanding the In-Camera Image Processing Pipeline for Computer Vision
- Operating principle and features of CMOS sensors
- Image Sensor Terminology

Monochrome vs Color

- How much resolution do I lose using a color industrial camera in a mono mode?
- Does Colour Really Matter? Evaluation via Object Classification

Shutter Type and Speed

- <u>Real-Time Camera Tracking: When is High Frame-Rate</u> <u>Best?</u>
- Global Shutter Efficiency Improvement to >100dB in Advanced Global Shutter Imager

Resolution

- Imaging Electronics 101: Camera Resolution for Improved Imaging System Performance
- Efficient High-Resolution Deep Learning: A Survey

More information on models and techniques

Defect Detection

- Faster R-CNN
- <u>Tire Defect Detection Using Fully Convolutional</u> <u>Network</u>

License Plate Recognition

- License Plate Recognition in Urban Road Based on Vehicle Tracking and Result Integration
- License Plate Detection and Recognition in Unconstrained Scenarios

Crowd Counting

- <u>CSRNet</u>
- <u>NWPU-Crowd: A Large-Scale Benchmark for Crowd</u> <u>Counting and Localization</u>
- <u>To choose or to fuse? scale selection for crowd</u> <u>counting</u>
- <u>Efficient High-Resolution Deep Learning: A Survey</u>

ΛΛΝΕΤ°

embedded

SUMMIT