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Vision AI Tasks

3© 2023 GMAC Intelligence

Tiger

Tiger sitting on 
green grass

Classification

Segmentation

Object Detection

Caption Generation

Tiger



Deep CNNs for Vision AI
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CNN parameters to be learned:
Convolution layer: kernels, bias
FC Layer: weights, bias
Normalization: mean, variance

Training cnns:
CNNs learn these 
features during training 
process which is specific 
to the vision ai task.

Power of deep CNNs: 
Capability of learning 
features directly from 
visual data.



• What is training ?

o It is the process of using data to adjust the parameters of the model such that it can make 
accurate predictions or inferences

• Why should we train ?

o To make the model useful/accurate for executing (inferencing) a specific vision ai task

• Where should we train?

o Usually* on a high-end server with GPUs or TPUs with high memory, storage and processing power

* Smaller models can be trained on PCs with GPUs

Training 3Ws - What? Why? Where? 
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Training vs Inferencing
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TrainingDataset, CNN Trained CNN

InferencingLabels
Real-time data, 

trained CNN

Inferencing

• Real-time, on edge devices *

• Memory, compute, storage limited

• Metrics: FPS (frames per second)

Training

• Offline, on high-end servers *

• Data limited

• Metrics: accuracy, generalization 

* Edge training and server inferencing also feasible



• Supervised: Model is trained on labeled data with input-output pairs

• Unsupervised: Model is trained on unlabeled data without any predetermined output 

• Semi-supervised: Model is trained on both labeled and unlabeled data

Training Methods
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Perceptron Model
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Inputs           Weights                Sum         Non-linearity           Output

y = f(w1x1 + w2x2 + ... + wnxn + w0)
w0



Data
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X: (x1,x2) => inputs
Y:  (red, blue) => labels
Dataset: (X,Y) n

x1

x2

x1

x2



Data
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What is a good dataset ? 

• Captures the underlying probability 
distribution of the data in real-world

• Accurate labels 

• Well partitioned (training, validation, test)
x1

x2

PDF



Learning
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X: (x1,x2) => inputs
Y:  (red = 0, blue =1) => labels
Dataset: (X,Y) n

Learning goal – Figure out w0, 
w1 & w2 such that for any data 
point (x1,x2), model computes 
the label y accurately

x1

x2

Learning Algorithm

1. Assume random values for w0, w1, w2 
2. Iterate until Y predicted correctly for “most” X in Dataset

• Update (w0,w1,w2)
3. Use learned weights (w0,w1,w2) to classify X accurately

After Training:
1*x1 + 1*x2 - 9 > 0 

Model:
w1*x1 + w2*x2 - w0 > 0 

x1

x2

w1

w2

y ∫

w0

Inputs           Weights       Weighted-Sum   Non-linearity    Output



Learning via Optimization
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Empirical Loss or Objective function

Gradient Descent Algorithm

Update

w

J(w)

Gradient

Initial Weight

J(w)min



Stochastic Gradient Descent
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Learning rate Global Minima hard to 
converge on with a non-
convex loss function

Local Minima 
causes undesirable 
convergence, 
suboptimal parameters

Estimate of true gradient 
based on a batch “B” of random 
samples



• Adaptive Moment Estimation (Adam)

o Adaptive learning rate based on the momentum of gradients  

o Faster and more stable convergence

• Root Mean Square Propagation (RMSprop)

o Adaptive learning rate based on moving average of the squared 
gradients

o Mitigates the problem of exploding or vanishing gradients

• Adagrad

o Adaptive learning rate based on historical gradient information

o Reduces the learning rate for frequently occurring parameters

Improvements on SGD
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Animation from: 
https://imgur.com/s25RsOr

https://imgur.com/s25RsOr


Improvements on SGD
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Non-convex Loss function Optimization Adam Update Rule  based on Moment “m”

v(t) = m*v(t-1) + (1 - m)*∂J(W)/ ∂ W

W(t) = W(t-1) - η * v(t)

SGD Update

By Chabacano [GFDL or CC BY-SA 4.0], from Wikimedia Commons

http://www.gnu.org/copyleft/fdl.html
https://creativecommons.org/licenses/by-sa/4.0


Nonlinearity Modelling
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x1

x2

1. Non-linear relationships 
between input X and 
output Y needs multi-layer 
models and non-linear 
activation functions.

2. Multi-layer model with multiple 
hidden layers for non-linear 
arbitrary function modelling.  
Multiple layers of weights need to 
be learned for accurate prediction.

w1n w2n

3. Choose functions based on 
problem type (binary or multi-
class classification, regression). 
Needs experimentation.

Multilayer Perceptron Activation FunctionsNonlinearity



Under the Hood - Backpropagation

17© 2023 GMAC Intelligence

Error backpropagation using chain 
rule of differentiation essential for 
learning parameters of a deep network

w2 w1



Training Resources for Beginners
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MNIST

CIFAR-10

VOC-20



Training with Keras
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# Load the data and split it between train and test sets
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()

# Build the model
model = keras.Sequential(

[
keras.Input(shape=input_shape),
layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Flatten(),
layers.Dropout(0.5),
layers.Dense(num_classes, activation="softmax"),

]
)

# Train the model
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accura
cy"])
model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)

# Evaluate the trained model
score = model.evaluate(x_test, y_test, verbose=0)
print("Test loss:", score[0])
print("Test accuracy:", score[1])



Training Caveats 
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Caveats:

• Number of training epochs/iterations, dataset coverage, 
affects generalization and accuracy

• Learning rate, batch size, are important hyper-parameters 
for convergence and accuracy

Mitigation:

• Hyper-parameter tuning and/or heuristics
• Data augmentation and synthetic data 
• Adjust network architecture (depth, width) to 

improve accuracy and convergence
• Regularization

Regularization



Training Caveats - Regularization
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x1

x2

Regularization methods:

• Early termination

• L1/L2 (loss) regularization

• Dropout

• Batch normalization

Underfit

Overfit

Ideal

By Chabacano [GFDL or CC BY-SA 4.0], from Wikimedia Commons

http://www.gnu.org/copyleft/fdl.html
https://creativecommons.org/licenses/by-sa/4.0


L1/L2 Loss Regularization
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Binary cross entropy loss:

• L1 regularization (sparsity, less complexity)

J(w) = -(1/N) ∑ [yi log(ŷi) + (1- yi) log(1-ŷi)] + λ ||w||1

• L2 regularization (smooth, less sensitive parameters, computationally efficient training)

J(w) = -(1/N) ∑ [yi log(ŷi) + (1- yi) log(1-ŷi)] + (λ/2) ||w||2

Intuition: smaller values of “w” leads to better generalization, optimal λ for best fit (between overfitting and underfitting)



Dropout and Batch Normalization
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image source: primo.ai

Dropout Batch Normalization

Learned parameters: β, γ
Estimated parameters: μ , σ
Hyper parameter: Є

http://primo.ai/index.php?title=Dropout


• Trained deep CNNs can accomplish various vision AI tasks

• Key ingredients for training CNNs: dataset, learning algorithm, back-propagation

• A good dataset should represent the underlying distribution of data

• A good training algorithm is efficient in learning parameters from data

• Accuracy and generalization are KPIs of a well-trained network

• Leverage heuristics and regularization to make training more efficient

• Keras, Tensorflow and Pytorch are good frameworks to start training

Conclusions
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• 4:45 pm today!  “Deep Neural Network Training: Diagnosing Problems and 
Implementing Solutions,” a presentation by Fahed Hassenat

• Keras  https://keras.io/

• Tensorflow https://www.tensorflow.org/

• Pytorch https://pytorch.org/

• Colab Online Training Servers https://colab.research.google.com/

• SOTA Vision Models https://paperswithcode.com/area/computer-vision

• MIT Deep Learning Course http://introtodeeplearning.com/

Further Resources
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