2023 embedded VISION SUMMIT

Fundamentals of Training AI Models for Computer Vision Applications

Amit Mate Founder & CEO GMAC Intelligence

Content

- Vision AI tasks
- Deep CNNs for vision AI
- What is training?
- Training vs inferencing
- Types of training

- Under the hood model, data, process
- Training frameworks and tools
- Training a CNN in Keras
- Training caveats
- Conclusions

Vision AI Tasks

Classification

Segmentation

G

Object Detection

Caption Generation

© 2023 GMAC Intelligence

3

Deep CNNs for Vision AI

Training 3Ws - What? Why? Where?

• What is training ?

 It is the process of using data to adjust the parameters of the model such that it can make accurate predictions or inferences

• Why should we train ?

 \circ To make the model useful/accurate for executing (inferencing) a specific vision ai task

• Where should we train?

• Usually* on a high-end server with GPUs or TPUs with high memory, storage and processing power

* Smaller models can be trained on PCs with GPUs

* Edge training and server inferencing also feasible

• **Supervised:** Model is trained on labeled data with input-output pairs

• **Unsupervised:** Model is trained on unlabeled data without any predetermined output

• **Semi-supervised:** Model is trained on both labeled and unlabeled data

Perceptron Model

Inputs

Weights

Sum

Non-linearity

Output

Data

X: $(x_1, x_2) =>$ inputs Y: (red, blue) => labels **Dataset**: $(X,Y)_n$

Data

What is a good dataset ?

- Captures the underlying probability distribution of the data in real-world
- Accurate labels
- Well partitioned (training, validation, test)

Learning

Y: (red = 0, blue = 1) => labelsDataset: $(X,Y)_n$

Learning goal – Figure out w0, w1 & w2 such that for any data point (x1,x2), model computes the label y accurately

Learning Algorithm

- 1. Assume random values for w0, w1, w2
- 2. Iterate until Y predicted correctly for "most" X in Dataset
 - **Update** (w0,w1,w2)
- 3. Use learned weights (w0,w1,w2) to classify X accurately

11

Learning via Optimization

Empirical Loss or Objective function

$$\boldsymbol{J}(\boldsymbol{W}) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}\left(\underline{f(\boldsymbol{x}^{(i)}; \boldsymbol{W})}, \underline{y^{(i)}}\right)$$

Predicted Actual

Gradient Descent Algorithm

Stochastic Gradient Descent

Algorithm

- 1. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Pick batch of *B* data points

4. Compute gradient,
$$\frac{\partial J(W)}{\partial W} = \frac{1}{B} \sum_{k=1}^{B} \frac{\partial J_k(W)}{\partial W}$$

5. Update weights, $W \leftarrow W - \eta \frac{\partial J(W)}{\partial W}$
6. Return weights

Estimate of true gradient based on a batch "B" of random samples

Improvements on SGD

Adaptive Moment Estimation (Adam)

 $_{\odot}$ Adaptive learning rate based on the momentum of gradients

Faster and more stable convergence

Root Mean Square Propagation (RMSprop)

- Adaptive learning rate based on moving average of the squared gradients
- Mitigates the problem of exploding or vanishing gradients

Adagrad

Adaptive learning rate based on historical gradient information

Reduces the learning rate for frequently occurring parameters

© 2023 GMAC Intelligence

Animation from:

embedded

SUMMI

Improvements on SGD

Non-convex Loss function Optimization

Adam Update Rule based on Moment "m"

 $v(t) = m^* v(t-1) + (1 - m)^* \partial J(W) / \partial W$

 $\boldsymbol{W}(t) = \boldsymbol{W}(t-1) - \boldsymbol{\eta} * \boldsymbol{v}(t)$

Nonlinearity Modelling

Nonlinearity

1. Non-linear relationships between input X and output Y needs multi-layer models and non-linear activation functions.

Multilayer Perceptron

 Multi-layer model with multiple hidden layers for non-linear arbitrary function modelling.
 Multiple layers of weights need to be learned for accurate prediction.

Activation Functions

3. Choose functions based on problem type (binary or multiclass classification, regression). Needs experimentation.

Under the Hood - Backpropagation

Error backpropagation using chain rule of differentiation essential for learning parameters of a deep network

Training Resources for Beginners

TensorFlow

CIFAR-10

airplane	Senda 1	1-	*	Y	-	2	R.	-	-200
automobile		30	稐	9	-	1	-	-	-
bird	N.	1		100	4	17	X	3	4
cat	1		1	34	*e.	2	4	ě	7
deer	1 State	14	R	1	Y	Y	Y	-6	5
dog	38	1.00		1	-		R'	4	14
frog		*	Sil	*	÷۵,	1	-	1	1
horse		e. 17	3	3	(CAR)	×.	at .	6	
ship	23		-		-	D	~		
truck	1	面上					1		al.

PyTorch

Training with Keras

Load the data and split it between train and test sets
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
Build the model
model = keras.Sequential(
 [
 keras.Input(shape=input_shape),
 layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
 layers.MaxPooling2D(pool_size=(2, 2)),
 layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
 layers.MaxPooling2D(pool_size=(2, 2)),
 layers.Flatten(),
 layers.Dropout(0.5),
 layers.Dense(num_classes, activation="softmax"),
]
 # Train the model

model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accura cy"]) model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)

Evaluate the trained model

score = model.evaluate(x_test, y_test, verbose=0)
print("Test loss:", score[0])
print("Test accuracy:", score[1])

Training Caveats

Caveats:

- Number of training epochs/iterations, dataset coverage, affects generalization and accuracy
- Learning rate, batch size, are important hyper-parameters for convergence and accuracy

Mitigation:

- Hyper-parameter tuning and/or heuristics
- Data augmentation and synthetic data
- Adjust network architecture (depth, width) to improve accuracy and convergence
- Regularization

Training Caveats - Regularization

- **Regularization methods**:
- Early termination
- L1/L2 (loss) regularization
- Dropout
- Batch normalization

By Chabacano [GFDL or CC BY-SA 4.0], from Wikimedia Commons

L1/L2 Loss Regularization

Binary cross entropy loss:

• L1 regularization (sparsity, less complexity)

 $J(w) = -(1/N) \sum [y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)] + \lambda ||w||_1$

• L2 regularization (smooth, less sensitive parameters, computationally efficient training)

 $J(w) = -(1/N) \sum [y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)] + (\lambda/2) ||w||^2$

Intuition: smaller values of "w" leads to better generalization, optimal λ for best fit (between overfitting and underfitting)

Dropout and Batch Normalization

embedded VISION SUMMIT

Dropout

image source: primo.ai

Batch Normalization

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ, β Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$

$$\begin{split} \mu_{\mathcal{B}} &\leftarrow \frac{1}{m} \sum_{i=1}^{m} x_{i} & // \text{ mini-batch mean} \\ \sigma_{\mathcal{B}}^{2} &\leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_{i} - \mu_{\mathcal{B}})^{2} & // \text{ mini-batch variance} \\ \widehat{x}_{i} &\leftarrow \frac{x_{i} - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}} & // \text{ normalize} \\ y_{i} &\leftarrow \gamma \widehat{x}_{i} + \beta \equiv \text{BN}_{\gamma,\beta}(x_{i}) & // \text{ scale and shift} \end{split}$$

Learned parameters: β , γ Estimated parameters: μ , σ Hyper parameter: \in

G

Conclusions

- Trained deep CNNs can accomplish various vision AI tasks
- Key ingredients for training CNNs: dataset, learning algorithm, back-propagation
- A good dataset should represent the underlying distribution of data
- A good training algorithm is efficient in learning parameters from data
- Accuracy and generalization are KPIs of a well-trained network
- Leverage heuristics and regularization to make training more efficient
- Keras, Tensorflow and Pytorch are good frameworks to start training

Further Resources

- 4:45 pm **today**! "Deep Neural Network Training: Diagnosing Problems and Implementing Solutions," a presentation by Fahed Hassenat
- Keras <u>https://keras.io/</u>
- Tensorflow <u>https://www.tensorflow.org/</u>
- Pytorch <u>https://pytorch.org/</u>
- Colab Online Training Servers https://colab.research.google.com/
- SOTA Vision Models https://paperswithcode.com/area/computer-vision
- MIT Deep Learning Course http://introtodeeplearning.com/

