
Fundamentals of
Training AI Models for
Computer Vision
Applications

Amit Mate

Founder & CEO

GMAC Intelligence

• Vision AI tasks

• Deep CNNs for vision AI

• What is training?

• Training vs inferencing

• Types of training

Content

2© 2023 GMAC Intelligence

• Under the hood – model, data, process

• Training frameworks and tools

• Training a CNN in Keras

• Training caveats

• Conclusions

Vision AI Tasks

3© 2023 GMAC Intelligence

Tiger

Tiger sitting on
green grass

Classification

Segmentation

Object Detection

Caption Generation

Tiger

Deep CNNs for Vision AI

4© 2023 GMAC Intelligence

CNN parameters to be learned:
Convolution layer: kernels, bias
FC Layer: weights, bias
Normalization: mean, variance

Training cnns:
CNNs learn these
features during training
process which is specific
to the vision ai task.

Power of deep CNNs:
Capability of learning
features directly from
visual data.

• What is training ?

o It is the process of using data to adjust the parameters of the model such that it can make
accurate predictions or inferences

• Why should we train ?

o To make the model useful/accurate for executing (inferencing) a specific vision ai task

• Where should we train?

o Usually* on a high-end server with GPUs or TPUs with high memory, storage and processing power

* Smaller models can be trained on PCs with GPUs

Training 3Ws - What? Why? Where?

5© 2023 GMAC Intelligence

Training vs Inferencing

6© 2023 GMAC Intelligence

TrainingDataset, CNN Trained CNN

InferencingLabels
Real-time data,

trained CNN

Inferencing

• Real-time, on edge devices *

• Memory, compute, storage limited

• Metrics: FPS (frames per second)

Training

• Offline, on high-end servers *

• Data limited

• Metrics: accuracy, generalization

* Edge training and server inferencing also feasible

• Supervised: Model is trained on labeled data with input-output pairs

• Unsupervised: Model is trained on unlabeled data without any predetermined output

• Semi-supervised: Model is trained on both labeled and unlabeled data

Training Methods

7© 2023 GMAC Intelligence

Perceptron Model

8© 2023 GMAC Intelligence

Inputs Weights Sum Non-linearity Output

y = f(w1x1 + w2x2 + ... + wnxn + w0)
w0

Data

9© 2023 GMAC Intelligence

X: (x1,x2) => inputs
Y: (red, blue) => labels
Dataset: (X,Y) n

x1

x2

x1

x2

Data

10© 2023 GMAC Intelligence

What is a good dataset ?

• Captures the underlying probability
distribution of the data in real-world

• Accurate labels

• Well partitioned (training, validation, test)
x1

x2

PDF

Learning

11© 2023 GMAC Intelligence

X: (x1,x2) => inputs
Y: (red = 0, blue =1) => labels
Dataset: (X,Y) n

Learning goal – Figure out w0,
w1 & w2 such that for any data
point (x1,x2), model computes
the label y accurately

x1

x2

Learning Algorithm

1. Assume random values for w0, w1, w2
2. Iterate until Y predicted correctly for “most” X in Dataset

• Update (w0,w1,w2)
3. Use learned weights (w0,w1,w2) to classify X accurately

After Training:
1*x1 + 1*x2 - 9 > 0

Model:
w1*x1 + w2*x2 - w0 > 0

x1

x2

w1

w2

y ∫

w0

Inputs Weights Weighted-Sum Non-linearity Output

Learning via Optimization

12© 2023 GMAC Intelligence

Empirical Loss or Objective function

Gradient Descent Algorithm

Update

w

J(w)

Gradient

Initial Weight

J(w)min

Stochastic Gradient Descent

13© 2023 GMAC Intelligence

Learning rate Global Minima hard to
converge on with a non-
convex loss function

Local Minima
causes undesirable
convergence,
suboptimal parameters

Estimate of true gradient
based on a batch “B” of random
samples

• Adaptive Moment Estimation (Adam)

o Adaptive learning rate based on the momentum of gradients

o Faster and more stable convergence

• Root Mean Square Propagation (RMSprop)

o Adaptive learning rate based on moving average of the squared
gradients

o Mitigates the problem of exploding or vanishing gradients

• Adagrad

o Adaptive learning rate based on historical gradient information

o Reduces the learning rate for frequently occurring parameters

Improvements on SGD

14© 2023 GMAC Intelligence

Animation from:
https://imgur.com/s25RsOr

https://imgur.com/s25RsOr

Improvements on SGD

15© 2023 GMAC Intelligence

Non-convex Loss function Optimization Adam Update Rule based on Moment “m”

v(t) = m*v(t-1) + (1 - m)*∂J(W)/ ∂ W

W(t) = W(t-1) - η * v(t)

SGD Update

By Chabacano [GFDL or CC BY-SA 4.0], from Wikimedia Commons

http://www.gnu.org/copyleft/fdl.html
https://creativecommons.org/licenses/by-sa/4.0

Nonlinearity Modelling

16© 2023 GMAC Intelligence

x1

x2

1. Non-linear relationships
between input X and
output Y needs multi-layer
models and non-linear
activation functions.

2. Multi-layer model with multiple
hidden layers for non-linear
arbitrary function modelling.
Multiple layers of weights need to
be learned for accurate prediction.

w1n w2n

3. Choose functions based on
problem type (binary or multi-
class classification, regression).
Needs experimentation.

Multilayer Perceptron Activation FunctionsNonlinearity

Under the Hood - Backpropagation

17© 2023 GMAC Intelligence

Error backpropagation using chain
rule of differentiation essential for
learning parameters of a deep network

w2 w1

Training Resources for Beginners

18© 2023 GMAC Intelligence

MNIST

CIFAR-10

VOC-20

Training with Keras

19© 2023 GMAC Intelligence

Load the data and split it between train and test sets
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()

Build the model
model = keras.Sequential(

[
keras.Input(shape=input_shape),
layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Flatten(),
layers.Dropout(0.5),
layers.Dense(num_classes, activation="softmax"),

]
)

Train the model
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accura
cy"])
model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)

Evaluate the trained model
score = model.evaluate(x_test, y_test, verbose=0)
print("Test loss:", score[0])
print("Test accuracy:", score[1])

Training Caveats

20© 2023 GMAC Intelligence

Caveats:

• Number of training epochs/iterations, dataset coverage,
affects generalization and accuracy

• Learning rate, batch size, are important hyper-parameters
for convergence and accuracy

Mitigation:

• Hyper-parameter tuning and/or heuristics
• Data augmentation and synthetic data
• Adjust network architecture (depth, width) to

improve accuracy and convergence
• Regularization

Regularization

Training Caveats - Regularization

21© 2023 GMAC Intelligence

x1

x2

Regularization methods:

• Early termination

• L1/L2 (loss) regularization

• Dropout

• Batch normalization

Underfit

Overfit

Ideal

By Chabacano [GFDL or CC BY-SA 4.0], from Wikimedia Commons

http://www.gnu.org/copyleft/fdl.html
https://creativecommons.org/licenses/by-sa/4.0

L1/L2 Loss Regularization

22© 2023 GMAC Intelligence

Binary cross entropy loss:

• L1 regularization (sparsity, less complexity)

J(w) = -(1/N) ∑ [yi log(ŷi) + (1- yi) log(1-ŷi)] + λ ||w||1

• L2 regularization (smooth, less sensitive parameters, computationally efficient training)

J(w) = -(1/N) ∑ [yi log(ŷi) + (1- yi) log(1-ŷi)] + (λ/2) ||w||2

Intuition: smaller values of “w” leads to better generalization, optimal λ for best fit (between overfitting and underfitting)

Dropout and Batch Normalization

23© 2023 GMAC Intelligence

image source: primo.ai

Dropout Batch Normalization

Learned parameters: β, γ
Estimated parameters: μ , σ
Hyper parameter: Є

http://primo.ai/index.php?title=Dropout

• Trained deep CNNs can accomplish various vision AI tasks

• Key ingredients for training CNNs: dataset, learning algorithm, back-propagation

• A good dataset should represent the underlying distribution of data

• A good training algorithm is efficient in learning parameters from data

• Accuracy and generalization are KPIs of a well-trained network

• Leverage heuristics and regularization to make training more efficient

• Keras, Tensorflow and Pytorch are good frameworks to start training

Conclusions

24© 2023 GMAC Intelligence

• 4:45 pm today! “Deep Neural Network Training: Diagnosing Problems and
Implementing Solutions,” a presentation by Fahed Hassenat

• Keras https://keras.io/

• Tensorflow https://www.tensorflow.org/

• Pytorch https://pytorch.org/

• Colab Online Training Servers https://colab.research.google.com/

• SOTA Vision Models https://paperswithcode.com/area/computer-vision

• MIT Deep Learning Course http://introtodeeplearning.com/

Further Resources

25© 2023 GMAC Intelligence

https://keras.io/
https://www.tensorflow.org/
https://pytorch.org/
https://colab.research.google.com/
https://paperswithcode.com/area/computer-vision
http://introtodeeplearning.com/

