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• Neurons in biological nervous systems 
communicate with ‘spikes’  binary pulses

• Spike represents events in 
spiking neural networks (SNNs)

• Spiking activities are sparse

• Major dynamic energy only consumed when 
spikes occur

• Spike-based, event-driven computing:
Low energy consumption

Event-Driven Neuromorphic Computing
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Artificial vs. Spiking Neuron Model
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• Neuron behavior: integrate & fire

• Integrate membrane potential (Vk ) over time 
with weighted sum of spikes & weights

• If membrane potential crosses threshold,

• Neuron spikes

• Membrane potential resets
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SNN Training with Temporal Information
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• Conventional training: 

• 2-D tensor for input 

• batch + neurons

• SNN training w/ time: 

• 3-D tensor for input 

• batch + neurons + time

• Difference with RNN:

• Include all time steps with same importance 
(membrane potential integration)



ANN vs. SNN Accuracy for ImageNet Dataset
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• Similar to ANN’s success on accuracy improvement for ImageNet dataset, 
recently there have been large improvements on SNN algorithms for ImageNet

ResNet-152

Spike-Norm
AlexNet

Spikeformer
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ResNeXt-101
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• Natural images (for computer vision tasks) are not in spiking format
 each input image needs to be converted into spikes via rate, burst, or latency encoding

• Such spike encoding implementation adds overhead on latency, energy, and area.

Spike Encoding for Input Images
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[3] A. Andreopoulos, et al., 

IBM Journal of Res. & Dev., 2015 Source: https://snntorch.readthedocs.io/



• If front-end sensor has outputs that are spikes, it can directly connect to SNNs

• Dynamic vision sensor, or event-based camera, sends spikes only when events occur 
e.g. changes in pixels (instead of sending full image at 30 fps irrespective of events)
 fast event detection possible with low power

Event-based Vision Sensor for SNNs
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• Suitable applications: fast moving object detection, control based on it, etc.

• Conventional CIS will always have blurry images for fast moving objects

Advantages of Event-based Camera
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[5] B. Son, ISSCC, 2017



SNN Accuracy for DVS-CIFAR10 Dataset
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[7] H. Li, Front. Neuroscience, 2017

• DVS-CIFAR10: dataset of event-stream 
recordings (done with DVS camera & 
image movement) for classification of 
10 different objects

• Various training techniques have been largely improving the SOTA accuracy for 
event-based DVS-CIFAR10 dataset

TKSTEBN

TJCA-SNN

PLIF

NeuNorm

BPSA+BPTA



• For on-device SNN inference, model size and total memory footprint are important 
• Many SNN algorithms have been using FP32 precision to achieve high accuracy
• Our proposed SNN works: learnable threshold with low-precision quantization

SNN Accuracy vs. Model Size
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[8] E. Perot, 

NeurIPS, 2020

Prophesee Gen1 dataset:

- 228,123 cars

- 27,658 pedestrians

- 39 hours, recorded w/ 

Prophesee Gen1 sensor  

(1M pixel)

DVS-CIFAR10 Dataset Prophesee Gen1 Dataset



• For ANNs/DNNs, you don’t use the previous frame’s high-precision weighted sum value in the 
current/future frames, so don’t need to store the weighted sums for each neuron

• For SNNs, events occur over time, and you need to accumulate membrane potential (neuron state) 
over time for every neuron in the entire SNN
• Every neuron’s membrane potential is different  need to store each of them in entire SNN

• Total SNN memory = (weight_precision × # of weights) + (1-bit × # of neurons) + 
(mem_pot_precision × # of neurons) + etc.

• Membrane potential memory: more significant for activation-heavy SNNs (e.g. high input resolution)
• For Prophesee Gen1 dataset, memory of VGG-11+SSD [10] - weight: 35MB, mem. pot.: 40MB

Total Memory Footprint for SNNs
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• Spike-FlowNet: spike-based optical flow detection

Event-based Computer Vision Algorithms
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[12] Prophesee, CVPR Workshop, 2019

MobileNet-V2

7.1M weights

Prophesee, Edge AI & Vision Alliance, 2019

• Prophesee: real-time detection of fast-moving objects

[11] C. Lee, ECCV, 2020



Digital Neuromorphic Chips in the Literature
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• A number of industrial/academic neuromorphic chips have been presented to date

• Quickly evolving SNN algorithms need to be accommodated

[13] Y. Sandamirskaya, Science Robotics, 2022



• Algorithm:

• SNN trained with Prophesee’s Gen1 dataset

• Object detection: YOLOv3 variant (backbone: ResNet18)

• After training, 8-bit quantization

• Frame stacking improves mAP

• Hardware:

• Custom SoC simulated: 16nm, 600MHz, w/ DRAM model

Custom Hardware for Event-based SNN
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[14] B. Crafton, AICAS, 2021



• Efficient SNN for compact MobileNet architecture with 
configurable approximate computing

• Fine-grain pipelined architecture for low-precision SNN algorithms

• Prototype chip implemented with Intel 16 CMOS technology, 2mm x 2mm chip area

ASIC Chip Design for Mobile-SNN 
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Anupreetham et al., 

ASU



• Event-based cameras produce a sparse stream of events that can be processed more 
efficiently and with a lower latency than images, enabling ultra-fast vision-driven UAV control.

• Event-based vision algorithm implemented as SNN on Loihi chip  used in drone controller.

• Seamless integration of event-based perception on Loihi chip leads to 
faster control rates and lower latency

Event-based Vision & Control for UAVs w/ Loihi
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[15] A. Vitale, ICRA, 2021



• Ideal end-to-end neuromorphic computing system will require & integrate:

• Front-end DVS: high-resolution event sensor w/ sparse spike outputs 

• Mature event-based cameras are being commercially available

• Back-end SNN accelerator: low-power custom hardware fully exploiting sparsity

• Commercial/academia chips exist, but support for SOTA SNN algorithms isn’t clear

• Hardware-aware SNN algorithms: high-accuracy and compact algorithms 

• SOTA SNN algorithms have shown noticeable accuracy improvement, while many still 
use high-precision floating-point precision 

• Large event-based dataset available and could be forthcoming

• Fitting neuromorphic applications:

• High-speed motion/object tracking, latency-sensitive tasks

• Smart drones, robotics with fast perception and control

Summary
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