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• Neurons in biological nervous systems 
communicate with ‘spikes’  binary pulses

• Spike represents events in 
spiking neural networks (SNNs)

• Spiking activities are sparse

• Major dynamic energy only consumed when 
spikes occur

• Spike-based, event-driven computing:
Low energy consumption

Event-Driven Neuromorphic Computing

2Arizona State University

[1] S. Song, PLoS Biology, 2005



Artificial vs. Spiking Neuron Model
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• Neuron behavior: integrate & fire

• Integrate membrane potential (Vk ) over time 
with weighted sum of spikes & weights

• If membrane potential crosses threshold,

• Neuron spikes

• Membrane potential resets
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SNN Training with Temporal Information
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• Conventional training: 

• 2-D tensor for input 

• batch + neurons

• SNN training w/ time: 

• 3-D tensor for input 

• batch + neurons + time

• Difference with RNN:

• Include all time steps with same importance 
(membrane potential integration)



ANN vs. SNN Accuracy for ImageNet Dataset
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• Similar to ANN’s success on accuracy improvement for ImageNet dataset, 
recently there have been large improvements on SNN algorithms for ImageNet
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• Natural images (for computer vision tasks) are not in spiking format
 each input image needs to be converted into spikes via rate, burst, or latency encoding

• Such spike encoding implementation adds overhead on latency, energy, and area.

Spike Encoding for Input Images
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[3] A. Andreopoulos, et al., 

IBM Journal of Res. & Dev., 2015 Source: https://snntorch.readthedocs.io/



• If front-end sensor has outputs that are spikes, it can directly connect to SNNs

• Dynamic vision sensor, or event-based camera, sends spikes only when events occur 
e.g. changes in pixels (instead of sending full image at 30 fps irrespective of events)
 fast event detection possible with low power

Event-based Vision Sensor for SNNs
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• Suitable applications: fast moving object detection, control based on it, etc.

• Conventional CIS will always have blurry images for fast moving objects

Advantages of Event-based Camera
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[5] B. Son, ISSCC, 2017



SNN Accuracy for DVS-CIFAR10 Dataset
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[7] H. Li, Front. Neuroscience, 2017

• DVS-CIFAR10: dataset of event-stream 
recordings (done with DVS camera & 
image movement) for classification of 
10 different objects

• Various training techniques have been largely improving the SOTA accuracy for 
event-based DVS-CIFAR10 dataset

TKSTEBN

TJCA-SNN

PLIF

NeuNorm
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• For on-device SNN inference, model size and total memory footprint are important 
• Many SNN algorithms have been using FP32 precision to achieve high accuracy
• Our proposed SNN works: learnable threshold with low-precision quantization

SNN Accuracy vs. Model Size
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[8] E. Perot, 

NeurIPS, 2020

Prophesee Gen1 dataset:

- 228,123 cars

- 27,658 pedestrians

- 39 hours, recorded w/ 

Prophesee Gen1 sensor  

(1M pixel)

DVS-CIFAR10 Dataset Prophesee Gen1 Dataset



• For ANNs/DNNs, you don’t use the previous frame’s high-precision weighted sum value in the 
current/future frames, so don’t need to store the weighted sums for each neuron

• For SNNs, events occur over time, and you need to accumulate membrane potential (neuron state) 
over time for every neuron in the entire SNN
• Every neuron’s membrane potential is different  need to store each of them in entire SNN

• Total SNN memory = (weight_precision × # of weights) + (1-bit × # of neurons) + 
(mem_pot_precision × # of neurons) + etc.

• Membrane potential memory: more significant for activation-heavy SNNs (e.g. high input resolution)
• For Prophesee Gen1 dataset, memory of VGG-11+SSD [10] - weight: 35MB, mem. pot.: 40MB

Total Memory Footprint for SNNs
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• Spike-FlowNet: spike-based optical flow detection

Event-based Computer Vision Algorithms
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[12] Prophesee, CVPR Workshop, 2019

MobileNet-V2

7.1M weights

Prophesee, Edge AI & Vision Alliance, 2019

• Prophesee: real-time detection of fast-moving objects

[11] C. Lee, ECCV, 2020



Digital Neuromorphic Chips in the Literature
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• A number of industrial/academic neuromorphic chips have been presented to date

• Quickly evolving SNN algorithms need to be accommodated

[13] Y. Sandamirskaya, Science Robotics, 2022



• Algorithm:

• SNN trained with Prophesee’s Gen1 dataset

• Object detection: YOLOv3 variant (backbone: ResNet18)

• After training, 8-bit quantization

• Frame stacking improves mAP

• Hardware:

• Custom SoC simulated: 16nm, 600MHz, w/ DRAM model

Custom Hardware for Event-based SNN
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[14] B. Crafton, AICAS, 2021



• Efficient SNN for compact MobileNet architecture with 
configurable approximate computing

• Fine-grain pipelined architecture for low-precision SNN algorithms

• Prototype chip implemented with Intel 16 CMOS technology, 2mm x 2mm chip area

ASIC Chip Design for Mobile-SNN 
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Anupreetham et al., 

ASU



• Event-based cameras produce a sparse stream of events that can be processed more 
efficiently and with a lower latency than images, enabling ultra-fast vision-driven UAV control.

• Event-based vision algorithm implemented as SNN on Loihi chip  used in drone controller.

• Seamless integration of event-based perception on Loihi chip leads to 
faster control rates and lower latency

Event-based Vision & Control for UAVs w/ Loihi
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[15] A. Vitale, ICRA, 2021



• Ideal end-to-end neuromorphic computing system will require & integrate:

• Front-end DVS: high-resolution event sensor w/ sparse spike outputs 

• Mature event-based cameras are being commercially available

• Back-end SNN accelerator: low-power custom hardware fully exploiting sparsity

• Commercial/academia chips exist, but support for SOTA SNN algorithms isn’t clear

• Hardware-aware SNN algorithms: high-accuracy and compact algorithms 

• SOTA SNN algorithms have shown noticeable accuracy improvement, while many still 
use high-precision floating-point precision 

• Large event-based dataset available and could be forthcoming

• Fitting neuromorphic applications:

• High-speed motion/object tracking, latency-sensitive tasks

• Smart drones, robotics with fast perception and control

Summary
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