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Event-Driven Neuromorphic Computing ‘g'%!ﬁ“
U T

« Neurons in biological nervous systems
communicate with ‘spikes’ > binary pulses s*

150

 Spike represents events in
spiking neural networks (SNNs)

100

Neuron Potential

o

 Spiking activities are sparse Time
« Major dynamic energy only consumed when
spikes occur # 5
 Spike-based, event-driven computing: , C s
Low energy consumption Nk

[1] S. Song, PLoS Biology, 2005
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Artificial vs. Spiking Neuron Model vision
summiT

ANN Neuron SNN Neuron - Neuron behavior: integrate & fire

- Integrate membrane potential (V) over time
with weighted sum of spikes & weights
m

VE(E) = VEGE—1) + Z ak=1(t) x wht + bl
i=1

- If membrane potential crosses threshold,

integrate over time

Y A Vi) > 6
1 for gradient ;
| > estimation . Nsuron spikes
ol 6206 x ag(t) =1

« Membrane potential resets

RelLU Spike: Binary Activation
Vk(t) = Vreset

[2] S. Yin et al., BioCAS 2017

% Arizona State University 3
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« Difference with RNN:

« Include all time steps with same importance
(membrane potential integration)

SNN Training with Temporal Information vision
summiT
 Conventional training:
« 2-D tensor for input
 batch + neurons
t=0
¢ * SNN training w/ time:
 3-D tensor for input
 batch + neurons + time
t=1

t=2
Residual membrane potential V., (t-1)

% Arizona State University 4



ANN vs. SNN Accuracy for ImageNet Dataset

Asl

90 - BiT-L
ResNeXt-101

ResNet-152

—o—S0TA ANN models
—i— S0TA SNN models

60 - AlexNet

ImageNet Top-1 Accuracy (%)

50 -

Spikeformer

S-ResNet

BASIC-L

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Year

Similar to ANN’s success on accuracy improvement for ImageNet dataset,
recently there have been large improvements on SNN algorithms for ImageNet

Arizona State University
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Spike Encoding for Input Images

Rate 0 00 0 0 043¢
Burst 0OO00000
Time to spike (®)

[3] A. Andreopoulos, et al.,
IBM Journal of Res. & Dev., 2015

InputData .

Rate Coding

input=0
/—\" B(n=1,p=0)=0

. ‘\
s, Input=1
.

Tttt

Source: https://snntorch.readthedocs.io/

-
.~ mput 05
S B(n=1,p=0.5)=7
- “‘-

B

B(n=1,p=1)=1

« Natural images (for computer vision tasks) are not in spiking format
- each input image needs to be converted into spikes via rate, burst, or latency encoding

embedded

vision
SUMMIT

Latency Coding

—_—— t

» Such spike encoding implementation adds overhead on latency, energy, and area.

Asl

Arizona State University
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Event-based Vision Sensor for SNNs vision
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 If front-end sensor has outputs that are spikes, it can directly connect to SNNs

« Dynamic vision sensor, or event-based camera, sends spikes only when events occur
e.g. changes in pixels (instead of sending full image at 30 fps irrespective of events)
> fast event detection possible with low power

Dynamic vision sensor (DVS) or Event-based vision sensor

_+ power management

¥

Bogex ~ Vor= AT _L[ o é sl
lQ n(//lg) : | -Aln(l) / B ;g‘
J Vo é1 IC; \_ :UE _OFF digital core + memory
2%‘ l, reset
= differencing :

photoreceptor circuit comparators : it )
- SR 011, | SR

128x128 640x480 1280x720

[4] ETH Zurich, JSSC 2008 [5] Samsung, ISSCC 2017 [6] Prophesee, ISSCC 2020
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Advantages of Event-based Camera vision
summiT

CIS image for rotating object (~220 rpm) DVS image for rotating object (~220 rpm)

Represented with 8.3 msec time resolution ~ Represented with 0.5 msec time resolution
(120 fps) (effectively 2,000 fps)

[5] B. Son, ISSCC, 2017
« Suitable applications: fast moving object detection, control based on it, etc.

 Conventional CIS will always have blurry images for fast moving objects
%‘ Arizona State University 8
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SNN Accuracy for DVS-CIFAR10 Dataset vision

summitT

air- auto-
plane mobile bird cat deer dog frog horse ship truck

(L]
o
']

(o]
o
']

BPSA+BPTA

[7] H. Li, Front. Neuroscience, 2017

NeuNorm

« DVS-CIFAR10: dataset of event-stream
recordings (done with DVS camera &
image movement) for classification of

DVS-CIFAR10 Accuracy (%)
o ~
o o

(5]
o
']

10 different objects . . . . . .
2018 2019 2020 2021 2022 2023

Year

« Various training techniques have been largely improving the SOTA accuracy for
event-based DVS-CIFAR10 dataset

% Arizona State University
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SNN Accuracy vs. Model Size vision

DVS-CIFAR10 Dataset

90 - 0.45 -
3 TKS (arXiv'23) |
S 85 ® - 0.4

> TEBN (NeurlPS'22) k=)
-1 . 2 0.35
= 80 - * TJCA-SNN (CVER,22) 9
o *Our Works ° ° E
&; 75 . DSR-VGGH1(CVPR,22) TET-VGGSNN (ICLR'22) % 0.3
o SEW-7B-NET (NeurlPS'21) ©
- o 0.25
X 70 - z
m ¢ <
v tdBN-ResNet-19 (AAAI21) S 02
Q 65- g
g @ ASP-BP(AAAI20) 0.15
0 g0 -

v T v T r v r r T . 0.1

0 10 20 30 40 50

Weight Memory (MB)

summitT

Prophesee Genl Dataset

Prophesee Gen1 dataset:
RED (NeurlPS'20), Non-Spiking - 228 123 cars
1)
.YOIOV3, (AICAS'21) - 27,658 pedestrians
- 39 hours, recorded w/
Prophesee Gen1 sensor
*('I)urWork MatrixLSTM (CVPR'20), Non-Spiking (1M plxel)
-* o
OurWork G GSNN+SSD (WCNN'22)
AsyNet (ECCV'20), Non-Spiking
0 100 200 300 400 500 600 [8] E. Perot,

Weight Memory (MB) NeurlPS, 2020

« For on-device SNN inference, model size and total memory footprint are important
« Many SNN algorithms have been using FP32 precision to achieve high accuracy
« Our proposed SNN works: learnable threshold with low-precision quantization

Arizona State University 10



Total Memory Footprint for SNNs

Input synaptic events Synaptic weights

embedded

vision
suMmMIT

Output event
1 bit

1 bit 8 bits
Weight Threshold
16 bits
—  Weight Neuron state Ab —
Weight

[9] SynSense, TinyML Talks, 2021

« For ANNs/DNNSs, you don't use the previous frame’s high-precision weighted sum value in the
current/future frames, so don’t need to store the weighted sums for each neuron
« For SNNs, events occur over time, and you need to accumulate membrane potential (neuron state)

over time for every neuron in the entire SNN
« Every neuron’s membrane potential is different > need to store

- Total SNN memory = (weight_precision x # of weights) + (1-bit

each of them in entire SNN

x # of neurons) +

(mem_pot precision x # of neurons) + etc.
« Membrane potential memory: more significant for activation-heavy SNNs (e.g. high input resolution)
» For Prophesee Genl dataset, memory of VGG-11+SSD [10] - weight: 35MB, mem. pot.: 40MB

% Arizona State University
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Event-based Computer Vision Algorithms \ébﬂgp

» Spike-FlowNet: splke based optical flow detectlon

Flow Predictios

—
L

Transposed
Convolution ~——a| .

Predict Flow

« Prophesee: real t|me detectlon of fast-moving obJects

=" MobileNet-V2
S /-1M weights

[12] Prophesee, CVPR Workshop, 2019 Prophesee, Edge Al & Vision Alliance, 2019

m Arizona State University 12



Digital Neuromorphic Chips in the Literature

Asl

Company/Lab

Chip type

#MNeurons/
synapses

On-chip learning

Power

Software

embedded

vision
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Applications

TrueNorth/IBM (5)

SpiNNakerUniversity
of Manchester (13)

Loihi/Intel Labs (12)

Dymap-CNMNY

Digital
Digital

Dhigital

Digital

1M256M (in 4K
cores)

(in 64K x 18 ARM
cores)

~128,000/128 M per
chip (scalable)

~327,000/278,000

SynSense

BrainChip/Akida

Tianjic/Tsinghua

University (34)

Digital

Digital

Configurable, 8-Mb

SRAM

156 cores)

N

N

~03W

~kW

~5 mW\

~30 mW

40,000/10 M {on

~1W

Custom

1B/10 kilobytes

PyMNN, NEST

Lava

Rockpool, PyTorch

TensorFlow, CNN
— 5NN

Custom

DMK acceleration
Real-time
simulation of SNN;

HPC

Research chip

Smart sensing

Smart sensing,

one-shot learning

ANN/SNN
acceleration

[13] Y. Sandamirskaya, Science Robotics, 2022

A number of industrial/academic neuromorphic chips have been presented to date

Quickly evolving SNN algorithms need to be accommodated

Arizona State University

13



embedded

Custom Hardware for Event-based SNN vision

summiT
¢ A|90r|thm- DETECTION RESULTS ON GENT AUTOMOTIVE DETECTION
* SNN trained with Prophesee’s Genl dataset Camera  # Frames mAP (%) Fmergy  Latency

- Object detection: YOLOv3 variant (backbone: ResNet18) e ’4”“;’ -

ICa -

° ini -bhi i 1 WS 1 320 4,15 32.0

After training, 8-bit quantization pvs ! 20 e 20

° 1 1 DV S 8 386 4.9 379

Frame stacking improves mAP Vs ' e - i

« Hardware:
¢ Custom SoC simulated: 16nm, 600MHz, w/ DRAM model

[ Camera [ ISP / Aggregafion Unit [ Sysfolic Amray DRAM
6007

[14] B. Crafton, AICAS, 2021

500

Global Buffer

Psum Buffer

ViV

OFM Buffer 0-

% Arizona State University 14
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ASIC Chip Design for Mobile-SNN vision

summiT

-1 = =] LTS D

2l c1 C1

a
-
— Er— —_
‘ Psums 1 Psums i i
lookup : lookup : 1 D |:|
: - :
1

@

I -
| spike? E
1
- - [
= F——A-F
m c | SR c8 ->| Memb C8 L)
= —> —
. (e = [ g e | = i e [ e = e o e
Row buffers Row buffers Row buffe
Interleaved psums — Interleaved psums - In‘::rle:v:dr’psums - e ot I . B | ) o B

threshold, scalar, R threshold, scalar, i threshold, scalar,
Weights T bias Welghts,T APPI'XT s Weights T D

scal‘l Scan scan (e [ o o e e o o ot e

Anupreetham et al.,

- Efficient SNN for compact MobileNet architecture with ASU
configurable approximate computing

 Fine-grain pipelined architecture for low-precision SNN algorithms
 Prototype chip implemented with Intel 16 CMOS technology, 2mm x 2mm chip area

% Arizona State University 15
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Event-based Vision & Control for UAVs w/ Loihi vision

a)
>,\
¥ |0~ r

]

COR0ns, i

S04 0 2

X ,.In "
¥ {]
v ]
[ ]

L —=] d) e) n

[15] A. Vitale, ICRA, 2021

summiT

b) c)

ON LOIHI

« Event-based cameras produce a sparse stream of events that can be processed more
efficiently and with a lower latency than images, enabling ultra-fast vision-driven UAV control.

« Event-based vision algorithm implemented as SNN on Loihi chip - used in drone controller.

« Seamless integration of event-based perception on Loihi chip leads to
faster control rates and lower latency

Asl

Arizona State University
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fmnmary g

« Ideal end-to-end neuromorphic computing system will require & integrate:

» Front-end DVS: high-resolution event sensor w/ sparse spike outputs
« Mature event-based cameras are being commercially available

« Back-end SNN accelerator: low-power custom hardware fully exploiting sparsity
« Commercial/academia chips exist, but support for SOTA SNN algorithms isn’t clear

« Hardware-aware SNN algorithms: high-accuracy and compact algorithms
« SOTA SNN algorithms have shown noticeable accuracy improvement, while many still

use high-precision floating-point precision
* Large event-based dataset available and could be forthcoming
* Fitting neuromorphic applications:
 High-speed motion/object tracking, latency-sensitive tasks
« Smart drones, robotics with fast perception and control

m Arizona State University
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