2023 embedded VISION SUMMIT

Efficient Neuromorphic Computing with Dynamic Vision Sensor, Spiking Neural Network Accelerator and Hardware-Aware Algorithms

> Jae-sun Seo Arizona State University

Event-Driven Neuromorphic Computing

- Neurons in biological nervous systems communicate with 'spikes' → binary pulses
- Spike represents events in spiking neural networks (SNNs)
- Spiking activities are sparse
- Major dynamic energy only consumed when spikes occur
- Spike-based, event-driven computing: Low energy consumption

[1] S. Song, PLoS Biology, 2005

embedded

Artificial vs. Spiking Neuron Model

- Neuron behavior: integrate & fire
 - Integrate membrane potential (V_k) over time with weighted sum of spikes & weights $V_k^L(t) = V_k^L(t-1) + \sum_{i=1}^m a_k^{L-1}(t) \times w_{i,k}^{L-1} + b_k^L$
 - If membrane potential crosses threshold, $V_k^L(t) > \theta$
 - Neuron spikes $a_k^L(t) = 1$
 - Membrane potential resets $V_k(t) = V_{reset}$

SNN Training with Temporal Information

- Conventional training:
 - 2-D tensor for input
 - batch + neurons
- SNN training w/ time:
 - 3-D tensor for input
 - batch + neurons + time
- Difference with RNN:
 - Include <u>all</u> time steps with <u>same</u> importance (membrane potential integration)

embedded

SUMME

ANN vs. SNN Accuracy for ImageNet Dataset

• Similar to ANN's success on accuracy improvement for ImageNet dataset, recently there have been large improvements on SNN algorithms for ImageNet

embedded

Spike Encoding for Input Images

[3] A. Andreopoulos, et al., IBM Journal of Res. & Dev., 2015

Source: https://snntorch.readthedocs.io/

- Natural images (for computer vision tasks) are not in spiking format
 → each input image needs to be converted into spikes via rate, burst, or latency encoding
- Such spike encoding implementation adds overhead on latency, energy, and area.

Event-based Vision Sensor for SNNs

- If front-end sensor has outputs that are spikes, it can directly connect to SNNs
- Dynamic vision sensor, or event-based camera, sends spikes only when events occur e.g. changes in pixels (instead of sending full image at 30 fps irrespective of events)
 → fast event detection possible with low power

Advantages of Event-based Camera

CIS image for rotating object (~220 rpm) Represented with 8.3 msec time resolution (120 fps)

DVS image for rotating object (~220 rpm) Represented with 0.5 msec time resolution (effectively 2,000 fps) [5] B. Son, ISSCC, 2017

- Suitable applications: fast moving object detection, control based on it, etc.
- Conventional CIS will always have blurry images for fast moving objects

SNN Accuracy for DVS-CIFAR10 Dataset

[7] H. Li, Front. Neuroscience, 2017

 DVS-CIFAR10: dataset of event-stream recordings (done with DVS camera & image movement) for classification of 10 different objects

 Various training techniques have been largely improving the SOTA accuracy for event-based DVS-CIFAR10 dataset

SNN Accuracy vs. Model Size

- For on-device SNN inference, model size and total memory footprint are important
- Many SNN algorithms have been using FP32 precision to achieve high accuracy
- Our proposed SNN works: learnable threshold with low-precision quantization

- For ANNs/DNNs, you don't use the previous frame's high-precision weighted sum value in the current/future frames, so don't need to store the weighted sums for each neuron
- For SNNs, events occur over time, and you need to accumulate membrane potential (neuron state) over time for every neuron in the entire SNN
 - Every neuron's membrane potential is different \rightarrow need to store each of them in entire SNN
- Total SNN memory = (weight_precision × # of weights) + (1-bit × # of neurons) + (mem_pot_precision × # of neurons) + etc.
- Membrane potential memory: more significant for activation-heavy SNNs (e.g. high input resolution)
 - For Prophesee Gen1 dataset, memory of VGG-11+SSD [10] weight: 35MB, mem. pot.: 40MB

Event-based Computer Vision Algorithms

• Spike-FlowNet: spike-based optical flow detection

[11] C. Lee, ECCV, 2020

• Prophesee: real-time detection of fast-moving objects

[12] Prophesee, CVPR Workshop, 2019

Prophesee, Edge AI & Vision Alliance, 2019

embedded

SUMMI

Digital Neuromorphic Chips in the Literature

Company/Lab	Chip type	#Neurons/ synapses	On-chip learning	Power	Software	Applications
TrueNorth/IBM (9)	Digital	1 M/256 M (in 4 K cores)	Ν	~0.3 W	Custom	DNN acceleration
SpiNNaker/University of Manchester (13)	Digital	1B/10 kilobytes (in 64 K x 18 ARM cores)	Y	~kW	PyNN, NEST	Real-time simulation of SNN; HPC
Loihi/Intel Labs (12)	Digital	~128,000/128 M per chip (scalable)	Y	~1 W	Lava	Research chip
Dynap-CNN/ SynSense	Digital	~327,000/278,000	N	~5 mW	Rockpool, PyTorch	Smart sensing
BrainChip/Akida	Digital	Configurable, 8-Mb SRAM	Y	~30 mW	TensorFlow, CNN → SNN	Smart sensing, one-shot learning
Tianjic/Tsinghua University (34)	Digital	40,000/10 M (on 156 cores)	N	~1 W	Custom	ANN/SNN acceleration

[13] Y. Sandamirskaya, Science Robotics, 2022

- A number of industrial/academic neuromorphic chips have been presented to date
- Quickly evolving SNN algorithms need to be accommodated

Custom Hardware for Event-based SNN

14

• Algorithm:

- SNN trained with Prophesee's Gen1 dataset
- Object detection: YOLOv3 variant (backbone: ResNet18)
- After training, 8-bit quantization

Event Cache

Agg.

Mem Ct

DVS

0

DRAM

- Frame stacking improves mAP
- Hardware:
 - Custom SoC simulated: 16nm, 600MHz, w/ DRAM model

Psum Buffer

OFM Buffer

PE

ā

DETECTION RESULTS ON GEN1 AUTOMOTIVE DETECTION

embedded

SUMMI

Camera	# Frames	mAP (%)	Energy (mJ)	Latency (ms)
Optical DVS DVS DVS DVS	1 1 4 8 12	32.0 37.3 38.6 39.6	4.37 4.15 4.48 4.91 5.34	33.7 32.0 34.5 37.9 41.2

[14] B. Crafton, AICAS, 2021

ASIC Chip Design for Mobile-SNN

Anupreetham et al., ASU

- Efficient SNN for compact MobileNet architecture with configurable approximate computing
- Fine-grain pipelined architecture for low-precision SNN algorithms
- Prototype chip implemented with Intel 16 CMOS technology, 2mm x 2mm chip area

Event-based Vision & Control for UAVs w/ Loihi

[15] A. Vitale, ICRA, 2021

- Event-based cameras produce a sparse stream of events that can be processed more efficiently and with a lower latency than images, enabling ultra-fast vision-driven UAV control.
- Event-based vision algorithm implemented as SNN on Loihi chip \rightarrow used in drone controller.
- Seamless integration of event-based perception on Loihi chip leads to faster control rates and lower latency

Summary

- Ideal end-to-end neuromorphic computing system will require & integrate:
 - Front-end DVS: high-resolution event sensor w/ sparse spike outputs
 - Mature event-based cameras are being commercially available
 - Back-end SNN accelerator: low-power custom hardware fully exploiting sparsity
 - Commercial/academia chips exist, but support for SOTA SNN algorithms isn't clear
 - Hardware-aware SNN algorithms: high-accuracy and compact algorithms
 - SOTA SNN algorithms have shown noticeable accuracy improvement, while many still use high-precision floating-point precision
 - Large event-based dataset available and could be forthcoming
- Fitting neuromorphic applications:
 - High-speed motion/object tracking, latency-sensitive tasks
 - Smart drones, robotics with fast perception and control

Acknowledgements

- Faculty: Priya Panda (Yale)
- Students: Jian Meng, Ahmed Hasssan, Anupreetham (ASU)

• Sponsors:

embedded

SUMMIT

- [1] S. Song et al., "Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits," *PLOS Biology*, 2015.
- [2] S. Yin et al., "Algorithm and Hardware Design of Discrete-time Spiking Neural Networks based on Back Propagation with Binary Activations," *IEEE BioCAS*, 2017.
- [3] A. Andreopoulos et al., "Visual Saliency on Networks of Neurosynaptic Cores," *IBM Journal of Research and Development*, 2015.
- [4] P. Lichtsteiner et al., "A 128×128 120 dB 15 μs Latency Asynchronous Temporal Contrast Vision Sensor," *IEEE JSSC*, 2008.
- [5] B. Son et al., "A 640×480 Dynamic Vision Sensor with a 9μm Pixel and 300Meps Address-event Representation," *IEEE ISSCC*, 2017.
- [6] T. Finateu et al., "A 1280×720 Back-Illuminated Stacked Temporal Contrast Event-Based Vision Sensor with 4.86µm Pixels, 1.066GEPS Readout, Programmable Event-Rate Controller and Compressive Data-Formatting Pipeline," *IEEE ISSCC*, 2020.
- [7] H. Li et al., "CIFAR10-DVS: An Event-Stream Dataset for Object Classification," *Frontier of Neuroscience*, 2017.

[8] E. Perot et al., "Learning to Detect Objects with a 1 Megapixel Event Camera," *NeurIPS*, 2020.

- [9] M. Sorbaro et al., "Always-on visual classification below 1 mWwith spiking convolutional networks on Dynap[™]-CNN," *TinyML Talks*, 2021.
- [10] L. Cordone et al., "Object Detection with Spiking Neural Networks on Automotive Event Data", *IJCNN*, 2022.
- [11] C. Lee et al., "Spike-FlowNet: Event-based Optical Flow Estimation with Energy-efficient Hybrid Neural Networks," *ECCV*, 2020.
- [12] A. Sironi et al., "Learning from Events: on the Future of Machine Learning for Event-based Cameras," *CVPR Workshop*, 2019.
- [13] Y. Sandamirskaya et al., "Neuromorphic Computing Hardware and Neural Architectures for Robotics," *Science Robotics*, 2022.
- [14] B. Crafton et al., "Hardware-Algorithm Co-Design Enabling Efficient Event-based Object Detection," *IEEE AICAS*, 2021.
- [15] A. Vitale et al., "Event-driven Vision and Control for UAVs on a Neuromorphic Chip," IEEE ICRA, 2021.

