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The Problem

e Many ML tasks
* Limited capacity:
« Compute
« Memory
» Development time
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Our Solution

Many tasks, 1 model
Share common paths
« Architecture

 Data

* Testing

» Deployment
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After: 2 Tasks, 1 Model

Backbone
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Model Size Comparison: 2 functions vVision
summiT
# Encoder Parameters # Models Paﬁarl;ll:ins TOTAL
Before 2.4M 2 300k
re. .
S0k 5.15M
Aft 2.4M 1 300k
er. .
S0 2.75M
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Architecture

N\

video frames

« Configurable input size
« Swappable encoders
200 K, 420 K and 2.4 M param options
« Configurable training
« Train encoder, features and decoder jointly
« Freeze encoder and train heads

Encoder

 Train encoder, lower learning rate and train heads
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Head 1
Decoder
Head 2
Head 3
Head 4
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Data Strategy vision
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Data efficient architecture
» Tasks can learn from each other’s data through generalization in the encoder
« Similar to how models benefit from pre-training

Implicit regularization
 Multiple tasks discourage the model from overfitting on any one task

Benefit from diversity of data in related tasks

Only need to label data for the task you care about
 Quick and cheap to add a new task
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Inputs Function Labels
Head 1 Loss1
Encoder Decoder
Head3  LOSS2 — Weighted

sum loss

Sainjea4

Head 4 Loss3

HeadN | 0ss4

Back prop

» Skip losses for unlabeled functions
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Adding a New Task: embedded
Face Landmarks Detection \gﬂﬁp

v
CISCO

© 2023 Cisco Systems 10



SSLD: Single Shot Landmark Detection

« Perform face and keypoints detection in
one pass

« Based on YOLO v2 (transitioning to v3
soon)

« Remove classification loss
« Add landmark localization loss

« Computation is bounded
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Model Size Comparison: 4 functions
segmentation + gesture + face location+ face landmarks
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vision
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# Encoder Parameters

# Models

# Head Parameters

TOTAL

Separate:

2.4M

300k (segment)
50k (gesture)
50k (landmarks)
30k (face loc)

11.2M

Unified:

2.4M

300k (segment)
50K (gesture)
50K (landmark+face loc)

2.8M
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Multi-Function Model Performance VISion
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Ladon Model Performance (4 tasks)
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Compute GMACs per frame - tiny, small, medium models
— &= Segmentation IoU —&— Gesture Fscore ——@&=— Face box IoU —@=— Face keypoints mean-squared error
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Examples
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Optimized Portable Edge
Implementation

Cross-platform
« C++: Supports Windows, Mac, Linux, iOS,

Android

« Javascript: Recent versions of major browsers Encoder

Common ML framework
* ONNX, CoreML, OpenVINO
« CPU and GPU mode
» Consistent results
» Less conversion hell
High and low level API’'s

« Get high level predictions like a fully segmented

and blurred output, 2 and 3D filter effects

» Also low level access to segmentation masks,

landmark coordinates, etc...
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Foreground Overlays &
Segmentation ~ Backgrounds

Decoder

Gesture
Gestures .
Actions
Face
Landmarks Avatars

Face Location Be Right

& Size Back
Relighting Studio
LUT Lighting
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Training Label & Data Synthesis

« Two powerful methods

« Teachers:

« Build big teacher model from limited hand-

labeled data
 use it to bootstrap big data set

« Train range of small models

 Synthetic Scenes:

» Diverse
» 3D environments
- faces
s poses
+ lighting

* Programmatically animate 3D avatars

v
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Unlabeled data

4.Productjtraining

Human selection/correction ’

2.Rough labeling
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Lessons Learned vision
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Richer applications =» explosion of video ML needs =» compute crisis?

Multi-headed vision model is a form of "foundation model” like GPT-4 =» robustness through task
diversity

Smart algorithmic labeling can replace much hand labeling

Estimating algorithm FLOPS is an imperfect predictor of implementation throughput — not every layer is
a convolution

Implementing N functions together complicates loss function design and training
Raising system functionality may span many platforms =» portability

Emergence of edge CPU neural accelerators may open door to more aggressive video ML workloads,
but uneven time-lines for availability

Conventional wisdom says diverse training tasks together often doesn’t work. Conventional wisdom is
often wrong.
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* Semantic Segmentation: https://www.v7labs.com/blog/semantic-segmentation-guide
* Adaptive Re-lighting: https://arxiv.org/pdf/2009.14468.pdf
* Original YOLO paper: https://arxiv.org/abs/1506.02640

* Knowledge distillation: https://www.v7labs.com/blog/knowledge-distillation-guide

* Multi-task learning: https://towardsdatascience.com/multi-task-learning-in-machine-learning-
20a3/7cr96c9c

» Dataset Distillation: https://ai.coogleblog.com/2021/12/training-machine-learning-models-
more.html

* Intro to self-supervised learning: https://ai.facebook.com/blog/self-supervised-learning-the-dark-
matter-of-intelligence/

v
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