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• Latency

• Memory usage

• Energy usage

• Disk usage

Challenges with ML on Edge
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Cloud-to-edge ML pipeline
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Optimizations in ML pipeline
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Optimizations in ML pipeline
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Easier to implement/add

Affects accuracy less
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Model serialization



• Hardware specific optimizations

• Framework built-in native model compression methods

• Significantly affects speed

Inference frameworks and model serialization

8© 2023 Instrumental

Data 
gathering

Architecture 
search

Model 
training

Model 
compilation

Deployment 
and model 
inference



Frameworks focused on running inference. Lightweight, focused on 
specific hardware, require separate serialization.

• Hardware agnostic: e.g., TorchScript, ONNX, TFLite*

• Hardware specific:

• CPU: e.g., OpenVINO (Intel)

• GPU: e.g., TensorRT

• Mobile: e.g., CoreML

• NPU: Check out Embedded Vision Alliance members :-)

Inference frameworks
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• Object detection - YOLOv5s

Inference frameworks - example
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Framework Size, MB CPU inference, ms GPU (V100) inf, ms

PyTorch 29.5 127.61 10.19

TorchScript 29.4 131.23 6.85

TensorRT 33.3 N/A 1.89

ONNX 29.3 69.34 14.63

OpenVINO 29.3 66.52 N/A

TFLite 29.0 316.61 N/A

From https://docs.ultralytics.com/yolov5/tutorials/model_export/

https://docs.ultralytics.com/yolov5/tutorials/model_export/
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Pruning



• Eliminating redundant or unimportant parameters

• Affects accuracy, but can be addressed by finetuning

• Affects size more than speed

Pruning

12© 2023 Instrumental

Data 
gathering

Architecture 
search

Model 
training

Model 
compilation

Deployment 
and model 
inference



• Weight pruning

• Structural pruning

• Neuron

• Layer

• Filter

• Channel

Types of pruning
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Weight pruning
Neuron pruning



Weight pruning example
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• Image classification example – weight pruning

Configuration
Number of 
parameters

Top-1 accuracy, 
ImageNet

InceptionV3 Original 27.1M 78.1%

50% sparsity 13.6M 78.0%

75% sparsity 6.8M 76.1%

87.5% sparsity 3.3M 74.6%

From https://www.tensorflow.org/model_optimization/guide/pruning

https://www.tensorflow.org/model_optimization/guide/pruning
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Quantization



• Reducing numerical precision of weights and activations 

• Affects accuracy, but can be addressed during training

• Checkout the talk “Practical Approaches to DNN 
Quantization” later today

Quantization

16© 2023 Instrumental

Data 
gathering

Architecture 
search

Model 
training

Model 
compilation

Deployment 
and model 
inference



Quantization example
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• Image classification example – quantization

Configuration Size, MB
Inference 
(CPU), ms

Top-1 accuracy, 
ImageNet

InceptionV3 Original 95.7 1130 78.1%

Post training 
quantization

23.9 845 77.2%

Quantization 
aware training

23.9 543 77.5%

From https://www.tensorflow.org/lite/performance/model_optimization

https://www.tensorflow.org/lite/performance/model_optimization
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Weight clustering



• Cluster model weights and use indices

• Only optimizes model size

• Similar to quantization, but doesn’t change computation 
complexity

Weight clustering
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Weight clustering example
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• Replaces weights with 
reference to the closest 
centroids

• Centroids are usually 
rounded, but not 
quantized so main gain is 
model size 

0.86 -1.88 -1.44

-1.7 1.58 0.12

1.9 0.46 1.37

1 2 2

2 3 1

3 1 3

Centroid Index

0.33 1

-1.26 2

1.92 3

Weight 
matrix



Weight clustering example
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• Image classification example

Configuration Size, MB
Top-1 accuracy, 

ImageNet

MobileNetV2 Original 12.38 71.7%

Last 3 layers, 32 clusters 7.03 70.9%

Last 3 layers, 16 clusters 6.68 70.7%

All layers, 32 clsuters 4.05 69.7%

From https://www.tensorflow.org/model_optimization/guide/clustering

https://www.tensorflow.org/model_optimization/guide/clustering
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Knowledge distillation



• Smaller, more efficient "student" model learns to mimic the 
behavior of a larger, pre-trained "teacher" model

Knowledge distillation
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Student

Teacher

Training 
data

Knowledge distillation - example
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• Only student model is 
trained

• Student model and 
teacher model run on the 
same images

• Error is propagated back 
for student mode

Predictions

Predictions

True label



Knowledge distillation - example
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• Image classification example

From https://www.analyticsvidhya.com/blog/2022/01/knowledge-distillation-theory-and-end-to-end-case-study/

Base model
No. of 

parameters
Test 

accuracy

Teacher model VGG16 27 M 77%

Student model with 
Distillation

VGG16 pruned 296 k 75%

Student model without 
Distillation

VGG16 pruned 296 k 64%

https://www.analyticsvidhya.com/blog/2022/01/knowledge-distillation-theory-and-end-to-end-case-study/


• Finding smaller models which have less parameters and have 
faster predictions

Optimizing model architecture
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Model architecture - example
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• Object detection – YOLOv5 family

From https://github.com/ultralytics/yolov5

Model Size, MB mAP, COCO CPU inf, ms GPU (V100) inf, ms

YOLOv5n 4.1 45.7 45 6.3

YOLOv5s 14.8 56.8 98 6.4

YOLOv5m 42.8 64.1 224 8.2

YOLOv5l 93.6 67.3 430 10.1

YOLOv5x 174.1 68.9 766 12.1

https://github.com/ultralytics/yolov5
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Summary



Comparing optimization techniques
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Optimization Size decrease Speed increase

Inference framework Low High

Pruning High Low

Quantization High High

Weight clustering Low Low

Architecture search High High



• Use a test dataset to assess performance changes

• Impacts vary (e.g., less for image classification, more for object 
detection)

• Integrate compilation optimizations into training for optimal model 
selection

• Test on target hardware for deployment 

• Balance trade-offs: Understand acceptable accuracy loss and 
business metric impact

Recommendations on choosing model 
compression techniques
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• Open-source

• Inference or training frameworks with built-in solutions

• Commercial

• A number of companies specifically focus on optimizing your 
models (some of them are Alliance Members)

Open-source vs commercial
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• Begin with an open-source solution for quick optimization gains

• Consider commercial for specialized hardware (e.g., mobile) with 
easy trial options

• Use a test set to validate accuracy trade-offs for both approaches

Open-source vs commercial
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• Model compression is vital for cloud-to-edge ML pipelines

• Streamlined training pipeline enables easy exploration of 
approaches

• Integrating compression in training pipeline ensures optimal 
accuracy

Conclusions
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• Inference framework guides

• OpenVINO https://docs.openvino.ai/latest/openvino_docs_model_optimization_guide.html

• TFLite https://www.tensorflow.org/lite/performance/model_optimization

• ONNX https://onnxruntime.ai/docs/performance/model-optimizations/

• Books

• TinyML https://www.oreilly.com/library/view/tinyml/9781492052036/

• Deep Learning with PyTorch https://livebook.manning.com/book/deep-learning-with-pytorch/

Resources
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https://docs.openvino.ai/latest/openvino_docs_model_optimization_guide.html
https://www.tensorflow.org/lite/performance/model_optimization
https://onnxruntime.ai/docs/performance/model-optimizations/
https://www.oreilly.com/library/view/tinyml/9781492052036/
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