2023 embedded VISION SUMMIT

A Survey of Model Compression Methods

Rustem Feyzkhanov Staff Machine Learning Engineer Instrumental

- Cloud-to-edge ML pipeline and optimizations
- Model serialization
- Pruning
- Quantization
- Weight clustering
- Knowledge distillation
- Architecture search
- Summary

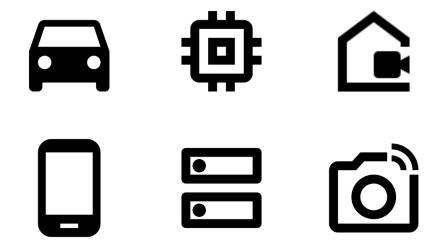
Energy usage

• Disk usage

• Memory usage

Latency

Challenges with ML on Edge



embedded

Cloud-to-edge ML pipeline

- Data acquisition
- Data labeling

- Feature selection
- Model
 architecture

training

Model

- Cloud training •
 pipeline •
- Parameter
 - optimizations

- Serialization
- Post training optimizations

Model

compilation

 Compiling model in cloud
 for hardware

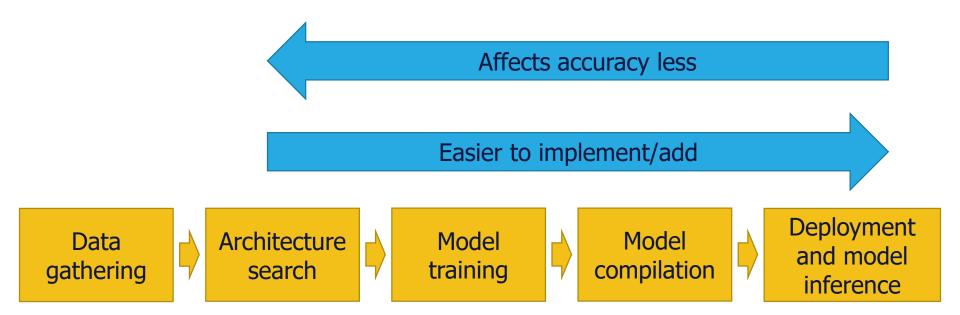
- Deployment and model inference
- Serving model to the edge
- Initializing model Making predictions

Optimizations in ML pipeline VISION SUMMIT Deployment Architecture Model Model Data and model compilation gathering training search

embedded

inference

Optimizations in ML pipeline



Model serialization

Inference frameworks and model serialization

- Hardware specific optimizations
- Framework built-in native model compression methods
- Significantly affects speed

embedded

Frameworks focused on running inference. Lightweight, focused on specific hardware, require separate serialization.

- Hardware agnostic: e.g., TorchScript, ONNX, TFLite*
- Hardware specific:
 - CPU: e.g., OpenVINO (Intel)
 - GPU: e.g., TensorRT
 - Mobile: e.g., CoreML
 - NPU: Check out Embedded Vision Alliance members :-)

NSTRUMENTAL

Inference frameworks - example

Object detection - YOLOv5s

Framework	Size, MB	CPU inference, ms	GPU (V100) inf, ms
PyTorch	29.5	127.61	10.19
TorchScript	29.4	131.23	6.85
TensorRT	33.3	N/A	1.89
ONNX	29.3	69.34	14.63
OpenVINO	29.3	66.52	N/A
TFLite	29.0	316.61	N/A

From https://docs.ultralytics.com/yolov5/tutorials/model_export/

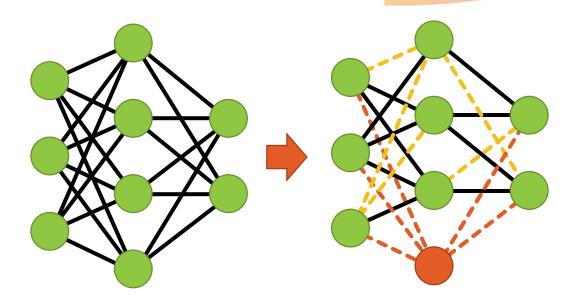
Pruning

Pruning

- Eliminating redundant or unimportant parameters
- Affects accuracy, but can be addressed by finetuning
- Affects size more than speed

Types of pruning

- Weight pruning
- Structural pruning
 - Neuron
 - Layer
 - Filter
 - Channel



---- Weight pruning ---- Neuron pruning

Weight pruning example

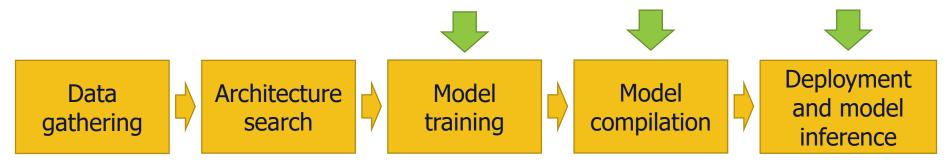
Image classification example – weight pruning

	Configuration	Number of parameters	Top-1 accuracy, ImageNet
InceptionV3	Original	27.1M	78.1%
	50% sparsity	13.6M	78.0%
	75% sparsity	6.8M	76.1%
	87.5% sparsity	3.3M	74.6%

From https://www.tensorflow.org/model_optimization/guide/pruning

Quantization

- Reducing numerical precision of weights and activations
- Affects accuracy, but can be addressed during training
- Checkout the talk "Practical Approaches to DNN Quantization" later today



Quantization example

• Image classification example – quantization

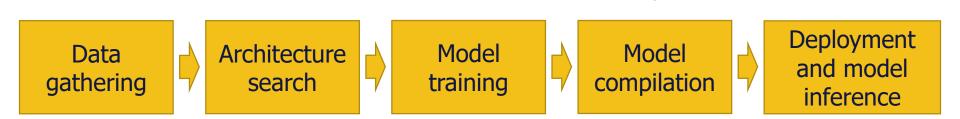
	Configuration	Size, MB	Inference (CPU), ms	Top-1 accuracy, ImageNet
InceptionV3	Original	95.7	1130	78.1%
	Post training quantization	23.9	845	77.2%
	Quantization aware training	23.9	543	77.5%

From https://www.tensorflow.org/lite/performance/model_optimization

Weight clustering

Weight clustering

- Cluster model weights and use indices
- Only optimizes model size
- Similar to quantization, but doesn't change computation complexity



 Centroids are usually rounded, but not quantized so main gain is model size

UMENTAL

2

3

2

3

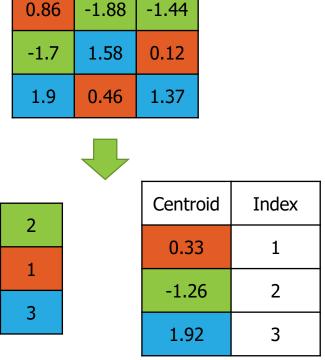
1

Weight

matrix

Weight clustering example

- Replaces weights with reference to the closest centroids
 - 1



Weight clustering example

• Image classification example

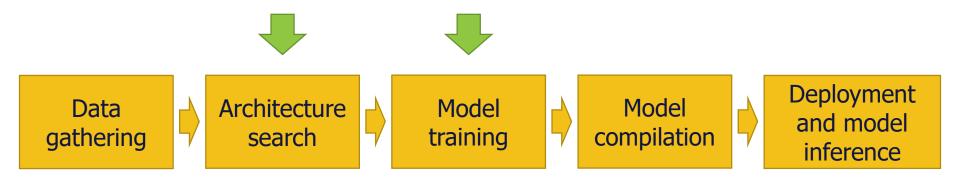
	Configuration	Size, MB	Top-1 accuracy, ImageNet
MobileNetV2	Original	12.38	71.7%
	Last 3 layers, 32 clusters	7.03	70.9%
	Last 3 layers, 16 clusters	6.68	70.7%
	All layers, 32 clsuters	4.05	69.7%

From https://www.tensorflow.org/model_optimization/guide/clustering

Knowledge distillation

Knowledge distillation

• Smaller, more efficient "student" model learns to mimic the behavior of a larger, pre-trained "teacher" model



Teacher Only student model is trained Student model and Predictions teacher model run on the same images • Error is propagated back for student mode Training Predictions True label data Student

Knowledge distillation - example

embedded

SUMMI

Knowledge distillation - example

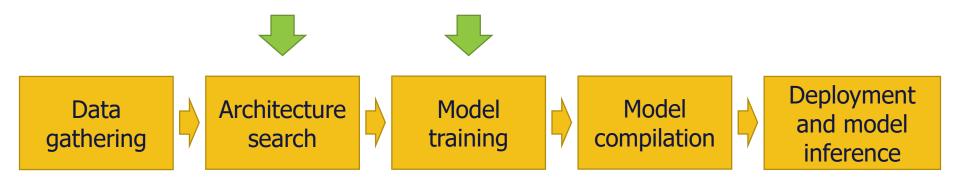
• Image classification example

	Base model	No. of parameters	Test accuracy
Teacher model	VGG16	27 M	77%
Student model with Distillation	VGG16 pruned	296 k	75%
Student model without Distillation	VGG16 pruned	296 k	64%

From https://www.analyticsvidhya.com/blog/2022/01/knowledge-distillation-theory-and-end-to-end-case-study/

Optimizing model architecture

• Finding smaller models which have less parameters and have faster predictions



Model architecture - example

Object detection – YOLOv5 family

Model	Size, MB	mAP, COCO	CPU inf, ms	GPU (V100) inf, ms
YOLOv5n	4.1	45.7	45	6.3
YOLOv5s	14.8	56.8	98	6.4
YOLOv5m	42.8	64.1	224	8.2
YOLOv5I	93.6	67.3	430	10.1
YOLOv5x	174.1	68.9	766	12.1

From https://github.com/ultralytics/yolov5

Summary

Comparing optimization techniques

Optimization	Size decrease	Speed increase	
Inference framework	Low	High	
Pruning	High	Low	
Quantization	High	High	
Weight clustering	Low	Low	
Architecture search	High	High	

Recommendations on choosing model compression techniques

- Use a test dataset to assess performance changes
 - Impacts vary (e.g., less for image classification, more for object detection)
- Integrate compilation optimizations into training for optimal model selection
- Test on target hardware for deployment
- Balance trade-offs: Understand acceptable accuracy loss and business metric impact

Open-source vs commercial

- Open-source
 - Inference or training frameworks with built-in solutions
- Commercial
 - A number of companies specifically focus on optimizing your models (some of them are Alliance Members)

Open-source vs commercial

- Begin with an open-source solution for quick optimization gains
- Consider commercial for specialized hardware (e.g., mobile) with easy trial options
- Use a test set to validate accuracy trade-offs for both approaches

- Model compression is vital for cloud-to-edge ML pipelines
- Streamlined training pipeline enables easy exploration of approaches
- Integrating compression in training pipeline ensures optimal accuracy

- Inference framework guides
 - OpenVINO https://docs.openvino.ai/latest/openvino_docs_model_optimization_guide.html
 - TFLite https://www.tensorflow.org/lite/performance/model_optimization
 - ONNX https://onnxruntime.ai/docs/performance/model-optimizations/
- Books
 - TinyML https://www.oreilly.com/library/view/tinyml/9781492052036/
 - Deep Learning with PyTorch https://livebook.manning.com/book/deep-learning-with-pytorch/

