2023 embedded VISION SUMMIT

Practical Approaches to DNN Quantization

Dwith Chenna Senior Embedded DSP Eng., Computer Vision Magic Leap Inc.

- Why Quantization?
- Quantization Scheme
- Types of Quantization
- Post Training Quantization
- Quantization Tools
- Network Architecture

- Calibration Dataset
- Min/Max Tuning
- Quantization Evaluation
- Quantization Analysis
- Quantization Aware Training
- Best Practices

Quantization is a powerful tool to enable deep learning on edge devices

 Resource constrained hardware with limited memory and low power requirement

 Model compression: Up to 4x smaller (float32 to int8) network size and memory bandwidth

 Latency reduction: Up to 2x-3x times, int8 compute is significantly faster compared to float32 [1]

• Trade-off: Potential effects on the model accuracy

Quantization Scheme

Convert full precision float-point numbers to int8 [2]

$$q = round\left(\frac{r}{s} + z\right)$$

q - quantized value, r - real value, s - scale, z - zero point

- Quantized value to float-point representation r = s (q z)
- In case of float-point distribution, we obtain scale and zero point as:

$$s = \frac{(r \max - r \min)}{(q \max - q \min)} \qquad z = round\left(q \max - \frac{r \max}{s}\right)$$

Quantization Scheme: Symmetric

- Assumes symmetric distribution for simplicity, zero point = 0
- Symmetric per tensor
 - Calculate scale for the entire tensor
 - Symmetric per channel
 - Calculate scale for each channel of the tensor
 - Computationally efficient

embedded

Quantization Scheme: Asymmetric

- Accounts for shifts in the distribution, better utilization of quantization range
- Asymmetric per tensor
 - Scale and zero point for the entire tensor
- Symmetric per channel
 - Scale and zero points for each channel of the tensor
- Better handling of diverse distributions

- Why Quantization?
- Quantization Scheme
- Types of Quantization
- Post Training Quantization
- Quantization Tools
- Network Architecture

- Calibration Dataset
- Min/Max Tuning
- Quantization Evaluation
- Quantization Analysis
- Quantization Aware Training
- Best Practices

Types of Quantization

- Post Training Quantization (PTQ)
 - Simple yet efficient
 - Uses already trained model and calibration dataset
- Quantization Aware Training (QAT)
 - Emulates inference-time quantization
 - Resource intensive as it needs retraining

Post Training Quantization

- Dynamic Quantization
 - Weights are quantized ahead of time
 - Activations are quantized during inference (dynamic)

- Static Quantization
 - Weights and activations are quantized
 - Memory bandwidth and compute savings
 - Needs representative dataset

Empirical distribution in a pre-trained network

networks? Weights: Symmetric per channel

Best quantization scheme for deep neural

- Static distribution makes it easy for quantization
- Weight distributions tend to be symmetric [<u>3</u>]
- Symmetric per channel handles diversity in weight distribution

ullet

embedded

Post Training Quantization

- Activations: Asymmetric/Symmetric per tensor
 - Dynamic distribution per inference makes it difficult to find statistics
 - Approximation through representative/calibration dataset
 - Batch normalization enables better distributions for quantization

- Why Quantization?
- Quantization Scheme
- Types of Quantization
- Post Training Quantization
- Quantization Tools
- Network Architecture

- Calibration Dataset
- Min/Max Tuning
- Quantization Evaluation
- Quantization Analysis
- Quantization Aware Training
- Best Practices

Quantization Tools: Tflite

- Tflite supports 8-bit integer PTQ [1]
- Quantization scheme
 - Weights: Symmetric per channel
 - Activations: Asymmetric per tensor
- Quantization analysis
 - Selective quantization with mixed precision (float32/16 + int8/int16)
 - Layerwise quantization error with custom metrics

Quantization Tools: Pytorch

- Pytorch supports 8-bit integer PTQ [4]
- Quantization scheme
 - Weights: (A)symmetric per tensor/channel
 - Activations: (A)symmetric per tensor/channel
- Quantization analysis
 - Layerwise quantization error through custom metrics

- Why Quantization?
- Quantization Scheme
- Types of Quantization
- Post Training Quantization
- Quantization Tools
- Network Architecture

- Calibration Dataset
- Min/Max Tuning
- Quantization Evaluation
- Quantization Analysis
- Quantization Aware Training
- Best Practices

- FLOPS is not everything!
- Network Architecture Search (NAS)
 - Most NAS based models (e.g., efficientNet) try to minimize compute
 - Results in deeper and leaner network that works well with cache-based systems

• Efficient architecture for quantization [5]

- Quantization aware
 - Larger models have redundancy which enables robustness to quantization

- Quantization scheme
 - Enable utilization of simpler and efficient quantization schemes

- Optimization tool chain
 - Aggressive layer fusion for optimal memory bandwidth
 - Optimal quantization parameter selection

- Hardware
 - Better suited for the hardware CPU/GPU/DSP/accelerator

- Why Quantization?
- Quantization Scheme
- Types of Quantization
- Post Training Quantization
- Quantization Tools
- Network Architecture

- Calibration Dataset
- Min/Max Tuning
- Quantization Evaluation
- Quantization Analysis
- Quantization Aware Training
- Best Practices

Calibration Dataset

- Representative dataset to estimate activation distribution
- Need to address diversity of the use case
- Size: ~100-1000 images are statistically significant [6]

Accuracy vs Calibration dataset size

NEWOIK

24

- Mean/Standard deviation
 - Assuming normal distribution
 - Min/Max: mean +/- 3*STD

Minimize quantization error and eliminate outliers •

ullet

•

Min/Max Tuning

- Histogram
 - Ignore the last x% percent

• Moving average (TensorFlow default)

- Search max/min (Pytorch/<u>TensorRT</u>)
 - Find histogram to cover most entropy

- Why Quantization?
- Quantization Scheme
- Types of Quantization
- Post Training Quantization
- Quantization Tools
- Network Architecture

- Calibration Dataset
- Min/Max Tuning
- Quantization Evaluation
- Quantization Analysis
- Quantization Aware Training
- Best Practices

Quantization Evaluation

- Evaluate best fit quantization schemes to the model [2]
 - ResNet50: Symmetric per tensor
 - MobileNet: Asymmetric per channel

Model vs Quantization Scheme

embedded

SUMMI

Quantization Evaluation

- Effects of quantization scheme on model accuracy [2]
- Classification accuracy of the quantized model

Network	Asymmetric,	Symmetric ,	Asymmetric,	Activation	Floating Point
	per-layer	per-channel	per-channel	Only	
Mobilenet-v1_1_224	0.001	0.591	0.703	0.708	0.709
Mobilenet-v2_1_224	0.001	0.698	0.697	0.7	0.719
Nasnet-Mobile	0.722	0.721	0.74	0.74	0.74
Mobilenet-v2_1.4_224	0.004	0.74	0.74	0.742	0.749
Inception-v3	0.78	0.78	0.78	0.78	0.78
Resnet-v1_50	0.75	0.751	0.751	0.751	0.752
Resnet-v2_50	0.75	0.75	0.75	0.75	0.756
Resnet-v1_152	0.766	0.762	0.767	0.761	0.768
Resnet-v2_152	0.761	0.76	0.76	0.76	0.778

- Why Quantization?
- Quantization Scheme
- Types of Quantization
- Post Training Quantization
- Quantization Tools
- Model Selection

- Calibration Dataset
- Min/Max Tuning
- Quantization Evaluation
- Quantization Analysis
- Quantization Aware Training
- Best Practices

- What to do when quantization fails?
- Individual layer support for quantization
- Identifying few problematic layers will significantly improve performance
- Common pitfalls
 - Handling input/output quantization
 - Layer fusion before quantization

- Analyse individual layers sensitivity to quantization [1]
- Selective quantization: mixed precision inference for testing

There are many layers with wide ranges, and some layers have high rmse/scale values

- Non-Linear activations: precision requirement and quantization support
 - ReLU/ReLU6 preferred over Sigmoid/LeakyReLU
- Weight/activation distribution: visualization or metrics for data distribution, i.e., range
- Layer fusion Conv + BN + ReLU / Conv + BN / Conv + ReLU before quantization

- Use larger bit width for more sensitive layers, i.e., fully connected, network head
 - Int16 activation support in tflite
- Min/Max tuning: Outlier weights that cause all other weights to be less precise

- Large difference in weight values for different output channels: more quantization error
 - Asymmetric/Symmetric per channel quantization
 - Weight equalization techniques to minimize the variation [7]

Weight equalization makes model quantization friendly •

Post-equalization box chart

- Why Quantization?
- Quantization Scheme
- Types of Quantization
- Post Training Quantization
- Quantization Tools
- Model Selection

- Calibration Dataset
- Min/Max Tuning
- Quantization Evaluation
- Quantization Analysis
- Quantization Aware Training
- Best Practices

Quantization Aware Training

• When everything else fails!

• QAT is a fine-tuning process

 Start with trained floating-point model: with reduced momentum and learning rate

38

Quantization Aware Training

• Inserting quantization nodes during training [8]

• Simulate quantization using float-point operations

Tune quantization parameters
during training

Quantization Aware Training

• QAT is able to achieve < 1% accuracy degradation w.r.t to floating-point inference [2]

	fp32	PTQ best		QAT		
Model	Accuracy	Calibration	Accuracy	Relative	Accuracy	Relative
MobileNet v1	71.88	99.9%	70.39	-2.07%	72.07	0.26%
MobileNet v2	71.88	99.99%	71.14	-1.03%	71.56	-0.45%
ResNet50 v1.5	76.16	Entropy	76.05	-0.14%	76.85	0.91%
ResNet152 v1.5	78.32	Entropy	78.21	-0.14%	78.61	0.37%
Inception v3	77.34	Entropy	77.54	0.26%	78.43	1.41%
Inception v4	79.71	99.99%	79.63	-0.10%	80.14	0.54%
ResNeXt50	77.61	Entropy	77.46	-0.19%	77.67	0.08%
ResNeXt101	79.30	99.999%	79.17	-0.16%	79.01	-0.37%
EfficientNet b0	76.85	Entropy	72.06	-6.23%	76.95	0.13%
EfficientNet b3	81.61	99.99%	80.28	-1.63%	81.07	-0.66%
Faster R-CNN	36.95	Entropy	36.82	-0.35%	36.76	-0.51%
Mask R-CNN	37.89	99.9999%	37.80	-0.24%	37.75	-0.37%
Retinanet	39.30	99.999%	39.19	-0.28%	39.25	-0.13%
FCN	63.70	Entropy	64.00	0.47%	64.10	0.63%
DeepLabV3	67.40	99.999%	67.50	0.15%	67.50	0.15%
GNMT	24.27	Entropy	24.53	1.07%	24.38	0.45%
Transformer	28.27	99.99%	27.71	-1.98%	28.21	-0.21%
Jasper	96.09	Entropy	96.11	0.02%	96.10	0.01%
BERT Large	91.01	99.999%	90.20	-0.89%	90.67	-0.37%

Table 7: Summary of Post Training Quantization and Quantization Aware Training. PTQ best reports the best accuracy and corresponding calibration for each model. QAT reports accuracy after fine-tuning starting from the best PTQ model.

- Why Quantization?
- Quantization Scheme
- Types of Quantization
- Post Training Quantization
- Quantization Tools
- Model Selection

- Calibration Dataset
- Min/Max Tuning
- Quantization Evaluation
- Quantization Analysis
- Quantization Aware Training
- Best Practices

Best Practices

- Model selection
 - NAS: Efficient architecture for quantization

- Quantization tools
 - Support for quantization schemes and analysis tools

- Calibration dataset
 - Representative dataset with ~100-1000 samples

Best Practices

- Quantization accuracy
 - Evaluate best-fit quantization scheme for the model

- Quantization analysis
 - Identify potentially problematic layers

- Quantization aware training
 - Fine tune model for quantization

- 1. <u>https://www.tensorflow.org/lite/performance/post_training_quantization</u>
- 2. Quantizing deep convolutional networks for efficient inference: A whitepaper [link]
- 3. Fixed Point Quantization of Deep Convolutional Networks [link]
- 4. <u>https://pytorch.org/docs/stable/quantization.html</u>
- 5. <u>https://deci.ai/resources/achieve-fp32-accuracy-int8-inference-speed/</u>
- 6. SelectQ: Calibration Data Selection for Post-Training Quantization[link]
- 7. AI Model Efficiency Toolkit (AIMET) [link]
- 8. Aspects and best practices of quantization aware training for custom network accelerators [link]