2023 embedded VISION SUMMIT

Doing More with Less: Optimizing Image Quality and Stereo Depth at the Edge

Tarik Loukili & Travis Davis Automation & Autonomy John Deere

Overview

- John Deere Background
- Image Quality Considerations
- Stereo Method Comparisons
- Q&A

Technology at John Deere

What Makes A Good Image For Computer Vision & Machine Learning?

See & Spray Select – Use Case

Configuration

- 120 ft boom
- •96 nozzles
- 34 cameras
- 5 controllers
- @ 12.5 mph

Color Correction

Ambient Light Inconsistency

• The change of color temperature through the day will cause the image to appear differently at different times of the day, hence make it challenging to develop an algorithm that deal with the color inconsistency.

JOHN DEERE

Stuck Material On The Lens

[4]

- Stuck Material maybe hard to detect especially when dealing with translucent material.
- Not all stuck material necessarily impact the image processing.

Stuck Material On The Lens

Dealing With Shadows

 $\mathsf{Atla}_{\ensuremath{\mathbb{F}}}$ Workflow for Image Quality and Computer Vision

[5] Atlas Algolux

[6] Visionary.AI

• Tunning the ISP settings may be challenging or impossible to get the optimum setting to deal with issues such as shadows.

Stereo Vision

Stereo Correspondence

Disparity: $dx = x_1 - x_r = 274 - 242 = 32$

Distance: D = fB/dx = (focal length x baseline) / disparity

Left Image

Right Image

Stereo Disparity Image

[7]

Stereo At John Deere

Various Baselines and Imagers

Various Image & Video Processors (FPGA or GPU)

Block Matching Example – Minimal Filtering

embedded VISION SUMMIT

OpenCV StereoBM [8]

Semi-Global Block Matching

OpenCV StereoSGBM [9]

Neural Net Based Stereo Approach (Machine Learning – RAFT)

iRaftStereo_RVC [10]

Alternate Block Matching Example

Alternate BM

Stereo Method Differences

Reference Image

JOHN DEERE

Block Matching

AI Matching (RAFT)

Pixel by Pixel Disparity Differences

Additional Examples with Various Stereo Comparisons

- "Alternate BM" most efficient method & meets requirements for several John Deere applications.
- ML approach has higher precision capability, but greater chance of error for low confidence areas.
- Many use cases are already doing a Computer Vision or Machine Learning Algorithm On Image(s)

🦲 JOHN DEERE

Conclusions & Recommendations

Strive to do More with Less

- Start with the Worst Case & Strive for the Best Case (Data, Application Requirements, & Compute)
- Characterize Your Image Conditions for Outdoor **Environments**
- Higher Computation Stereo Has More Resolution & Accuracy Potential, But Also Potential for Error
- Higher Computation Stereo Improves Edges Do you use Depth for your Edges?

embedded

References

Image Quality References:

- 1. https://www.adobe.com/uk/creativecloud/photography/discover/color-changer.html
- 2. <u>https://www.photoreview.com.au/tips/shooting/iso-and-image-quality/</u>
- 3. ttps://www.lumistrips.com/lumistrips-blog/color-temperature-explained/
- 4. <u>www.lensrentals.com</u>
- 5. <u>https://algolux.com/newsroom/algolux-brings-atlas-to-the-cloud-to-democratize-camera-isp-optimization-for-computer-vision/</u>
- 6. https://www.visionary.ai/

Stereo References:

- 7. Stereo Reference Example Image from https://vision.middlebury.edu/stereo/data/scenes2003/
- 8. OpenCV Stereo Block Matching from opencv/stereobm.cpp
- 9. <u>OpenCV Semi Global Block Matching</u> from <u>opencv/stereosgbm.cpp</u>

10. RAFT Stereo from princeton-vl/RAFT-Stereo

Special "Thanks" for Content & Contributions

Zach Bonefas, Nick Butts, Ruveen Perera, & Vincenzo Macri OHN DEERE