
Next-Generation Computer 
Vision Methods for Automated 
Navigation of Unmanned 
Aircraft

Julie Buquet

Scientist, Imaging

Immervision



Unmanned Aircraft Systems: Applications & 
Challenges
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• Small flying devices using vision algorithm on onboard camera for 
autonomous navigation.

• Broadly used in various applications: security, corp analysis, entertainment.

• Level of autonomy requires a constant image quality in a various range 
of scenarios and presenting many challenges.

Integration

• Dimensions
• Weights
• Outdoor conditions
• Power consumption

Requirements

• Best image quality
• Extended FOV

source
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Challenges of Drone Navigation: Overview
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Navigation in a broad range of scenarios Provide constant performance of computer vision algorithms

• How to maintain constant performance of corner detection in varying illumination?

• How to compensate for the increase in spatial and temporal noise in low-light?

• How do we maintain real-time analysis?

• How to choose a camera for optimized performance of off-the-shelf neural networks?

• Can we predict camera parameters’ influence on learning-based algorithms?

• What is the impact of a camera degradation during its lifespan?

• Can we optimize camera parameters to minimize this impact?

Kahaki, S.M.M.; Nordin, M.J.; Ashtari, A.H. 
Contour-Based Corner Detection and 
Classification by Using Mean Projection 
Transform. Sensors 2014, 14, 4126-4143. 
https://doi.org/10.3390/s140304126

. Zhu, Pengfei & Wen, Longyin & Bian, Xiao & Ling, Haibing 
& Hu, Qinghua. (2018). Vision Meets Drones: A Challenge. 
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Use Case 1: Corner Detection

Under Varying Illumination Scenarios

© Immervision



Corner Detection for Drone Navigation
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Obstacle avoidance:
The obstacle (tree branch) extremities can be detected 
using corner detection.
Improved autonomous navigation, lower risk of collision.

Geometric pattern and QR Code recognition:
We can identify a precise geometric pattern. 
Such patterns are used as target for:
• Precision landing.
• Increasing drone autonomy.
• Landing without GPS information.

Principle: Identify corners in an image using intensity variations to detect potential object, 
obstacle, and features of interest.

Kahaki, S.M.M.; Nordin, M.J.; Ashtari, A.H. Contour-Based Corner

Detection and Classification by Using Mean Projection

Transform. Sensors 2014, 14, 4126-4143.

https://doi.org/10.3390/s140304126
Yang, Tao & Ren, Qiang & Zhang, Fangbing & Xie, Bolin & Ren, Hailei & Li, Jing & 
Zhang, Yanning. (2018). Hybrid camera array-based UAV auto-landing on moving UGV 
in GPS-denied environment. Remote Sensing. 10. 1829. 10.3390/rs10111829. 
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Current Status
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Problem Statement:

• Traditional navigation camera performs well 
in daylight.

• Challenging lighting conditions impact pixel 
quality and then CV algorithm accuracy.

Examples:

• The decreasing signal in low-light reduces 
the amount of information available for 
scene understanding.

• The increased level of noise in low-light can 
bias the algorithm, which is then more 
likely to perform false detections.

Solution:

• Camera modules and algorithms must be 
customized for low-light conditions.

Corner detection for the same pattern under different levels of light

© Immervision



Existing Solutions: Optimize the Camera Sensor
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Current methods for better image quality in low-light sensor 
optimization:

• Use a gray-scale sensor to increase the SNR

• Increase pixel size 

Promising methods usually affect the image quality for higher 
illumination.

Complement this sensor optimization with corner 
detector optimization.

Provide constant corner detection in a broad range of 
illumination.

© Immervision



Existing Solution: Traditional Corner Detectors
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• Harris detector: Corner detection using the gradient at one point (x,y)

𝑖𝑓 𝑅 = det 𝑀 − 𝐾𝑡𝑟 𝑀 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 → 𝑐𝑜𝑟𝑛𝑒𝑟

No gradient Strong gradient 
in one direction: 
line

Strong gradient in 
two directions: 
corner

Threshold is customized depending on the camera 
and the outdoor conditions.

© Immervision



Limitations
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• Detection highly depends on illumination conditions 

• In low light: the intensity of a corner is similar to the noise level: False 
detection

Add feature clustering to create a more robust detection 
(elimination of spatial noise).

© Immervision



Our Method: Spatial Noise Reduction Using 
Feature Clustering
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Feature clustering :

Each corner is associated to one feature of interest.

We identify a cluster by computing its barycenter.

Results:

• Outliers (clusters with too few pixels) are avoided

• Spatial noise is reduced

• All corners are detected at 0.5 Lux 

We obtain the same corner detection as in 
daylight for extremely low light (0.5 lux)

0.5 Lux
© Immervision



Results after Temporal Noise Reduction
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0.5 Lux 3 Lux 15 Lux
All levels of illumination provide accurate corner detection 

100% of corners are detected.
© Immervision



Limitations: Residual Temporal Noise

12

There is still residual temporal noise which induces a variation of the estimated position of the 
corner:

• Applying noise reduction on low-light images might induce a loss of information.

• Averaging corner detection on several frames will limit all applications requiring real-time.

We will evaluate the impact of the temporal noise on each frame compared to the ground truth 
(average position estimated from 20 frames).

Frame n Frame n+5

True Positive : Corners detected in ground truth and current frame 

False Negative : Corners only identified in the ground truth

False Positive : Corners only identified in the current frame

© Immervision



Evaluation of the Residual Temporal Noise
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Corresponding displacement of cluster center:
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In our case, such metrics can be 
interpreted as a confidence score 
for the current corner detected

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, 𝑅 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, 𝐹1 =

2 ∗ 𝑅 ∗ 𝑃

𝑅 + 𝑃
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Conclusions on Low-Light Illumination 
Corner Detection
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• Corner detection algorithms can be adapted to a broad range of illumination by using spatial filtering 
methods such as feature clustering.

• This also reduces the temporal noise which allows consistent corner location across time.

• Each frame can provide accurate corner detection independently, which makes the algorithm able to run 
real-time.

An algorithm optimized for constant performance across illumination levels becomes a powerful 
KPI for camera evaluation in a context of machine vision.

© Immervision
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Use Case 2 : Object Detection With

Varying Blur from Camera Defocus

© Immervision



2D Object Detection and Identification
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Goals:

• Detecting an object and labelling it as one out of many available classes of object.
• Providing a better scene understanding to improve decision making.

Current Solution:

• Yolov4 pretrained on MSCoco : Real-time and lighter architecture.
• Broadly used in automotive : Good candidate for drone navigation.

© Immervision



2D Object Detection and Identification
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• Image quality is not constant when a camera is exposed to outdoor condition (motion, temperature shifts etc.).

• What is the impact of image quality degradation on neural network performance?

• Is it possible to optimize a camera to minimize this impact?

© Immervision



Our Camera Simulation Algorithm
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L2

L3

Aberration-free image Resulting degraded image Performance on off-the-
shelf neural network

L1

Lens sensor

In focus system

Camera simulation with different 
degradations

Front focus

Rear focus (strong)
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Experimental Procedure

19

Protocol: 

• PixSet dataset : 29 000 images taken on Canadian roads (urban environment) via 
a 180° road-facing camera placed on the rear-view mirror.

• We generate 21 datasets each corresponding to the same automotive camera 
with a value of defocus.

Metrics:

• Precision: How many objects identified are correct

• Recall: How many detections are correct among all objects 
to detect (sensitivity)

• F1: combination of both (global evaluation)

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, 𝑅 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, 𝐹1 =

2 ∗ 𝑅 ∗ 𝑃

𝑅 + 𝑃

True
Positive 
(TP)

False
Positive 
(FP)

False
Negative

(FN)

True
Negative

(TN)

True label
Positive   Negative

Predicted 
label

Positive

Negative 
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Results
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• Stationary results below 5 μm of defocus (only 
2.5% drop on F1-score)

• Slow drop until reaching 5% at 15.38 μm

At ʎ=550 nm:

A drop of 2% is observed for a defocus of 5.84 
µm and corresponds to a temperature shift of 
23.19 °C
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Results: Zoom-in
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Defocus increases from upper left to bottom right video: (in µm : 0, 5.81, 14.64, 22.12).
Large defocus reduces the accuracy of object detection algorithm.

© Immervision



Optimization of the Camera
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• Stationary results with a relative drop of 0.6% until 6 µm

• Linear decrease down to -2% (still acceptable) at 10 µm

• The evolution with defocus is the same as before but the 
amplitude of the drop is way smaller

At ʎ=550 nm : 

A drop of 2% is observed for a defocus of 10.21 µm and 
corresponds to a temperature shift of 43.67 °C (this

corresponds to an altitude variation of 6.5 km).

We can limit the impact of defocus on 2D Object detection by optimizing camera parameters.

Here, a smaller f-number is beneficial due to the small pixel size (1 µm) which might differ if we consider another 
camera module with different initial optical parameters.
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Conclusions on Object Detection with Image 
Quality Degradation
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• Simulating image quality degradation is useful to predict its impact on the performance of learning-based 
algorithms.

• By integrating the camera in the simulation, it is possible to predict its performance during its lifespan.

We can optimize optical parameters to limit the impact of image quality degradation on vision 
algorithms.

(This is a case study; the precise required resolution needed and the tolerated temperature shift need to be evaluated for each use case.)

© Immervision



Take Aways
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• Traditional computer vision can be adapted to fit drone 
navigation by using spatial noise filtering for improved 
performance in low light.

• Being able to simulate a camera and image quality 
degradation during its lifespan can help optical parameter 
optimization for improved performance of learning-based 
algorithms.

• Optimized algorithms can be used as KPI in a context of 
machine vision.

© Immervision



Resources

2023 Embedded Vision 
Summit

Visit our booth 711!
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Immervision website: https://www.immervision.com/
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1187009 (12 September 2021); https://doi.org/10.1117/12.2600197
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conditions," Proc. SPIE 12274, Emerging Imaging and Sensing Technologies for 
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Chien-Yao Wang, Hong-Yuan Mark Liao, 2020
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Blur induced by a camera defocus
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Negative defocusPositive defocus
Lens Camera sensor

In focus systemFront focus Rear focus
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Defocus due to temperature shift
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At 𝜆=550nm a drop of 2% in the performances :

𝑓# = 4 : 5.81 µm / 23.19 °C 

𝑓# = 2 : 10.94 µm / 43.67 °C 

Δ𝑓 = 𝛿𝐺𝑓Δ𝑇

Δ𝐿 = 𝛽𝑓Δ𝑇
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