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https://www.youtube.com/embed/1 SiUOYUoOI

[ Bochkovskiy A. et al ]


https://www.youtube.com/embed/1_SiUOYUoOI

Object Detection: Task

Input: A single image
(typically RGB)

Output: A set of
detected objects as class
label and bounding box
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Objects: From a set of
classes. Person, things,
even Texts
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[ researchleap.com/ | psimagazine.co.uk/ ]
[ Sang-gil Lee et al, MICCAI 2018 ]
[ learn.arcgis.com/ | vectorstock.com/ ]
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* Multiple Outputs

« Image can have variable number of objects from
various classes

 Can also have high overlap between objects in the
image

« Multiple Types of Outputs

* Need to output what (class label) and where
(bounding box)

« High Resolution Images [ image credit Bochkovskiy A. ]

« Classification works at 224x224. Higher resolution
is needed for detection.
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Object Detection: Evolution of Models

Traditional
S >
S S

¢ Viola Jones
* HOG
* DPM

* SSD
« YOLO * RetinaNet
* YOLOV2

Deep Learning
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* R-CNN ° Fast R-CNN * FPN
* Faster R-CNN

* CornerNet
* CenterNet
* EfficientDet

N
N
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* YOLOVS
* DeTR, Swin
Transformers
One-stage
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* Question: What is the problem with this setup?
It cannot detect if the image has multiple objects.

Classification head: What .
Correct label: Bird

— Class Scores
A/ | Bird: 0.90 J| Softmax
o Cat: 0.05 Loss
4 O
0 A Dog: 0.01
v
NN M e :
C Ode 6 Weighted » Multitask Loss
g Sum
5S¢ Bounding 4
¥ Box
o v, W, h) L2 Loss

Detection head: Where Bbox: (x, y', w’, h’)

[ Bird picture: https://pixabay.com/ ]
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« Use selective search to identify a manageable number of object region candidates (region of interest or
Rol).

« Extracts CNN features from each region independently for classification.

Warped region

aeroplane? no.

person? yes.

tvmonitor? no.

1. Input images 2. Extract region 3. Compute CNN features 4. Classify regions
proposals (~2k)

[ Girshick et al, CVPR 2014 ]
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1. Propose category-independent Rols by selective search
2. Warp region candidates to a fixed size as required by CNN, e.g. 224x224
3. Generate potential bounding boxes, and then run a classifier on these proposed boxes, e.g. SVM
4. Refine the bounding boxes, eliminate duplicate detections, and rescore the boxes based on other
objects in the scene
Bbox || Class
Warped region LBbox | | Class |
2 s M IM ® Conv Forward@ach@
Conv Net regionhrough
Cony Net ConvNet
ﬁWarpedmage
regions224x224)
?’.’; Regionsf
Input? Interest{Rol)&
image &> from@Bbroposalk
method (~2k)

[ Girshick et al, CVPR 2014 ] 10
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R-CNN: Impacts / Limitations

7 4l

» 30K citations

Pioneered the
CNN for object
detection

Sets the stage
to evolve the
field

—

Cannot be
trained end-
to-end

—

—

* 4K papers with
title "R-CNN" 1

—=

Requires 100s
of GB of
storage space

©

—

Selective
search is not
optimized for

object detection

—

[ 'Google Scholar advanced search. allintitle:"R-CNN" ]

—

-

\

Not suitable to
run real-time
applications

J

—

11
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« Run a single CNN on the entire image. Get Rols from the image features instead of the image itself.

» Share computations across all ROIs rather than doing calculations for each proposal independently.

« Does not need to cache extracted features in the disk. The architecture is trained end-to-end with a
multi-task loss.

Bbox | | Bbox || Bbox | CategoryEndiox?

Outputs:
bbox Class | [ Class | [ Class | transformBperi#egion
softmax regressor

Regionsi 1
eglons =z z [| Per-Region Network
Rol EG £C Interest{Rols) g

& L7 b

pooling from@&roposal Crop@Resizefeatures

layer FCs method Image features
“Backbone”ll Run@vhole@mage
network:@ through@onvNet

Rol feature AlexNet, W GG,@ [ =g
ResNet,R®tc
vector For each Rol
Input@mage
[ Paper: Girshick , ICCV 2015 ] 12

[ Image: https://www.mathworks.com/ ]
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* Nearly cost-free region proposals using Region Proposal Network (RPN), that shares convolutional features with the
detection network.

« The convolutional computations are shared across the RPN and the Fast R-CNN, effectively reducing the computation time.

o classifier

| 2k scores | | 4k coordinates | <mm  kanchor boxes
Rol pooling
cls layer \ ’ reg layer .

>/ | 256-d |
i intermediate layer
Region Proposal Networkg4
,CHIUYC maps
sliding window

conv layers
y / conv feature map

« Introduced multi-scale anchor boxes to detect objects of various sizes.

[ Ren et al, NeurIPS 2015 ] 13



Slow, Fast, and Faster R-CNN

Run CNN independently for
each region

Bbox || Class
Bbox | | Class

L Y% |
Bbox | | Class Conv Forward®ach@
Conv Net regionhrough®
Net ConvNet
Conv
&Warped[?lmage
regionsf224x224)

Regionsmf

InterestdRol)@
from@&proposald
method (~2k)

Input?
image 4

Differentiable cropping to shared

image features
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Compute region proposals with
CNNs

Bbox Bbox Bbox
| Class | Class Class

Regionsf

Interest@Rols)
from@B&proposal
method

“Backbone”R
network:?
AlexNet, GG,
ResNet,Rtc

Categoryndibox?
transform@erizegion

' Per-Region Network

CropEBRemzeEleatu res

Image features

RunBvhole@mage
through@onvNet
; ——

" proposals i ;
Region Proposal Network
1
CNN

B —— A

[ image credit: Justin Johnson, University of Michigan]

14
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» Use pyramidal feature hierarchy for efficient detection of objects of various sizes.

» Model Architecture: Backbone model (VGG) and SSD head. SSD head outputs the bounding box
and object classes.

- Large fine-grained feature maps (lower level) at are good at capturing small objects and small
coarse-grained feature maps detect large objects well (higher level).

Single Stage

l

nal Prediction layer

n Bounding-box
" proposals j - ;
$SD Layers feature map i

NN L
4

p——crrr 77—

| origi

[ Wei Liu et al, ECCV 2016 ] 15
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« Eliminate RPN. Use grid cells technique to detect object of various sizes.
« Predicts offset of predefined anchor (default) boxes for every location of the feature map.

« The anchor boxes on different levels are rescaled so that one feature map is only responsible for
objects at one particular scale.

Fine-grained Coarse-grained
Cat (Small Object) is captured by the 8x8 feature S - T i '_‘_‘_‘ ':‘l '
map (lower level). SLEE T I R
Dog (Large Object) can only be detected in the 4x4 B N | A et ] Lo
feature map (higher level) B o B 74 st b
i ettt
Gi=Eh’ Vioc: A(ez, ey, w, h)
conf { (c1,¢2, -} ¢p)

(a) Image with GT boxes (b)[8 x 8lfeature map (c)[4x 4l]feature map

[ Wei Liu et al, ECCV 2016 ] 16
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« One of the first attempts to build a fast, real-time object detector.

* YOLO Frames the object detection as a single regression problem, straight from image pixels to
bounding box and class probabilities. Hence, YOLO, You Only Look Once.

« The final prediction of shape S x S x (58 + C) is produced by two fully connected layers over the whole
conv feature map.

fully )
fully x B times C times
\ P RTEPPPRPEEPRRRRRRE necte 4  connected N e
e r N \
lnput | |© , "
] - >< >< (x, ¥, w, h, obj score) | class probability
length: 5B+C

Image DarkNet

\ Architecture
L 7x7x1024 4096 7x7x30

448x448x3

[ Paper: Redmond et al, CVPR 2016. ]
[ image: https://lilianweng.github.io/ ]
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Split the image into SxS cells. Each cell predicts
« The location of bounding boxes as (x, y, w, /), a confidence score, and a probability of
object class
« Final predictionis S x S x (58 + C). For PASCAL VOC S=7, B=2, C=20. That is why the final map
is 7x7x30

S X S X Bbounding boxes |#=%

confidence = Pr(object) x loU(pred, truth)

«  Cannot detect group of small objects.
Maximum B (here, 2) objects per cell

« Irregular shaped objects

Final detections

Pr(Class, | object)

Class probability map

[ Redmond et al, CVPR 2016. ] 18



YOLOv2 and Beyond

YOLOv2

* Light-weight base model,
DarkNet-19

* BatchNorm on conv layers

« Conv layers to predict anchor
boxes

* Direct location prediction

- )

[ Redmond et al, CVPR 2017 ]

YOLOv3

* Logistic regression for
confidence scores

+ Multiple independent classifiers
instead of one softmax

« Skip-layer concatenation

embedded
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YOLOvS

« Latest in the series

\_ )

19
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« DETR frames the object detection task as an image-to-set problem. Given an image, the model predicts
an unordered set of all the objects present.

« Existing methods have humber of components that make them complicated.

RPN
Faster . it
) Detection-specific
R-CNN Up to Filter and components
200,000 deduplicate
coarse — KOS
proposals
|
CNN Crop Classify Deduplicate Predicted
features (RolAlign) and refine proposals boxes and
mEd on coarse |mmd proposals (NMS) mEd classes
proposals
DETR CNN Standard Predicted
features transformer boxes and

mmd cncoder-decoder mmd classes

[ Carion N, Massa F et al ]
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 Directly predicts the final set of
detections in parallel

: € luti | Set of 1]] i
o training. binart . Eegais S . o | A
+ During training, bipartite matching Tty s D e ot g e
uniquely assigns predictions with gl e
ground truth boxes. c )
« Predictions with no match yield a “no SR
object” class prediction. g NG abiReti0) Ho abjectin)
i
=

« Slow convergence, 5x slower than .
Faster R-CNN =

« Poor detection on small objects

Bipartite matching loss

[ Carion N, Massa F et al ]

21



embedded

Object Detection in Video ViSion
SUMMIT

« Task of detecting objects from a video, such as in autonomous driving scenario

» Challenges
» Appearance deterioration

« Changes of video frames, e.g., motion blur, part occlusion, camera re-focous, rare poses etc.

» Aggregate temporal cues from different frames. Two-step baseline models (Faster R-CNN, R-FCN)
* Box-level. Post-processing of temporal information.

+ Feature-level. Improve features of the current frame by aggregating that of adjacent frames.

« Recent. Use one-step models such as YOLO / DETR to build end-to-end detectors.

22
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« Precision measures how accurate are the predictions of the detector, aka, percentage of

correct predictions. IoU =

+ Recall measures how good the object detector can detect all the positives.

« IoU measures the overlap between GT and predicted boundaries.

» Average Precision (AP) computes the mean precision value for recall value over 0 to 1.

[ Bird picture: https://pixabay.com/ ] 23



Mean Average Precision (mAP)

1. Run the detector for all test images

2. For each category: for each detection
1. Compute the AP, which is area under PR curve
2. Plot a point on PR curve if IoU > 0.5
mAP = average of AP for each category

4. COCO mAP : average AP for IoU from 0.5 to 0.95
with a step size of 0.05.

« Speed of the detection is usually quantified with FPS

embedded
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All Bird detections sorted by scores
0.99 0.95 0.90 0.50 0.10

\AIOU > 0.5

All GT Bird boxes

Precision-Recall Curve

Precision
(= (= [y
=] w [=]

=
)

=
=3

0.5 0.6 o7 08 09 10
Recall

24



Benchmark Analysis

mMAP (COCO Dataset)

65

win-L

DetectoRS ‘)eTR

CenterNet YOLOvV4 _EfficientDet-D2
|{Mask R-CNN
40 hctinan
FPN etinaNet
R-FCN
YOLOV3
gaster RCNN >SD YOLOV2
201 @&t rCNN
R-CNN YOLO
o{ @ SPP-Net
0 20 40 60 80

Frames per second
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T z 7\(
/c Ilgll d\ / Me;:)ry \ / N \

ompute / Spee Post-Process

» Model size / #Params

+ CPU / GPU / NPU « RAM / Flash « Some edge devices do
not support NMS

* Real-time applications  Imbalanced memory
- High resolution images distribution in first conv
layers

Considerations and Challenges

\_ /&\ /Eak %
4 ) N

Accuracy
&£
3 » Single-stage models « Higher precision models
® have lower mAP usually have lower FPS
|_

N / - / .
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« Design New Model
+ Design new model architecture that runs on your target device and train it [Not Recommended]
» Smaller version of an existing model and train it, such as FOMO, MCUNetV2

» Transfer Learning
+ Fine-tune an existing model on your custom data. For example, TF Detection Model Zoo.

 Pick a model that works best for your use-case and target hardware.

* Pre-training Optimizations

» Quantization-aware training of existing models

« Post-training Optimizations
* Model pruning / quantization
» Hardware specific optimizations: TFLite / TensorRT / ONNX / similar

27
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=
/ \ (1) Patch-based Inference
[ il ] On Pascal VOC
Per-layer Inference * 68.3% (+16.9) with 438kB SRAM
I I I I Ll - 64.6% (+13.2) with 247kB SRAM
« MobileNetV2 base model | B J FSTSTSESY [ P
« Patch-by-patch inference to solve Per-patch Inference
imbalanced memory distribution - — peak SRAM: 172kB
= — [ ] -
* Receptive Field redistribution to — —— /
reduce computation overhead * Only 7 FPS
* Not tested on high resolution

_ Y,

[ MCUNetV2: Lin et all, NeurIPS 2021 ]

28
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5\( ?
4 Fastesvt I:(-CNN N 4 @ N\ /3 @ ™\

Transformers D Obj Detection

A S * More algorithms/
ccuracy ot two-stage models « Particularly critical for
° Speed of One-Stage o Compat|b|||ty towards autonomous driVing

edge devices

- RN & /
on o\ /On-dev::Training\

Detection in Vide

. \E,ifglgfnt detection in * Training at the edge
devices
* Has SO many real-world + Adapt to data drifts
applications

\_ ) \_ )
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» Object detection applications and challenges

« Evolution of object detection systems

* Some of the popular object detection models

» Considerations and tradeoffs of object detection for edge applications

« Optimizing object detection systems for edge devices

30



Questions / Discussions
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Off the shelf object detection models:

» TensorFlow OD model Zoo

» TensorFlow Mobile Optimized Detectors

» Detectron 2: object detection using PyTorch and model zoo

Object detection training datasets
+ Pascal VOC dataset
+ MS COCO Dataset

Object detection training frameworks

» TensorFlow Lite , Example object detection for mobile devices

» PyTorch example object detection using pre-trained models

Get hands-on
» Train YOLOvV4 using Google Colab

— s
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https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md#mobile-models
https://github.com/facebookresearch/detectron2
http://host.robots.ox.ac.uk/pascal/VOC/
https://cocodataset.org/#home
https://www.tensorflow.org/lite/examples
https://www.tensorflow.org/lite/examples/object_detection/overview
https://towardsdatascience.com/object-detection-and-tracking-in-pytorch-b3cf1a696a98
https://colab.research.google.com/drive/1_GdoqCJWXsChrOiY8sZMr_zbr_fH-0Fg?usp=sharing#scrollTo=O2w9w1Ye_nk1

