
Understanding, Selecting, and
Optimizing Object Detectors for
Edge Applications

Md Nasir Uddin Laskar

Staff Machine Learning Engineer

Walmart Global Tech

Highlights

2

Introduction
Evolution of OD

models

Two-stage
models: R-CNNs

One-stage
models: YOLO,

SSD

Transformer-
based: DETR

OD for edge
devices

OD future
directions

https://www.youtube.com/embed/1_SiUOYUoOI

Object Detection: Introduction

3[Bochkovskiy A. et al]

https://www.youtube.com/embed/1_SiUOYUoOI

Input: A single image
(typically RGB)

Output: A set of
detected objects as class
label and bounding box

Objects: From a set of
classes. Person, things,
even Texts

Object Detection: Task

4

Object Detection: Applications

5

[researchleap.com/ | psimagazine.co.uk/]
[Sang-gil Lee et al, MICCAI 2018]

[learn.arcgis.com/ | vectorstock.com/]

• Multiple Outputs

• Image can have variable number of objects from
various classes

• Can also have high overlap between objects in the
image

• Multiple Types of Outputs

• Need to output what (class label) and where
(bounding box)

• High Resolution Images

• Classification works at 224x224. Higher resolution
is needed for detection.

Object Detection: Challenges

6

[image credit Bochkovskiy A.]

Object Detection: Evolution of Models

7

. . .

Traditional

One-stage

Two-stage
• Viola Jones
• HOG
• DPM

Deep Learning Transformers

• Fast R-CNN
• Faster R-CNN

• FPN• R-CNN

• YOLO

• SSD
• RetinaNet
• YOLOv2

• CornerNet
• CenterNet
• EfficientDet

• YOLOv5
• DeTR, Swin

Object Detection: Simple Approach

8

CNN Model

Classification head: What

Detection head: Where

Correct label: Bird

Bbox: (x’, y’, w’, h’)

4
0
9
6

Class Scores

Bird: 0.90
Cat: 0.05
Dog: 0.01
…

Bounding
Box

(x, y, w, h)

Softmax
Loss

L2 Loss

Weighted
Sum

Multitask Loss

[Bird picture: https://pixabay.com/]

• Question: What is the problem with this setup?

It cannot detect if the image has multiple objects.

• Use selective search to identify a manageable number of object region candidates (region of interest or
RoI).

• Extracts CNN features from each region independently for classification.

R-CNN Class of Models

9[Girshick et al, CVPR 2014]

1. Propose category-independent RoIs by selective search

2. Warp region candidates to a fixed size as required by CNN, e.g. 224x224

3. Generate potential bounding boxes, and then run a classifier on these proposed boxes, e.g. SVM

4. Refine the bounding boxes, eliminate duplicate detections, and rescore the boxes based on other
objects in the scene

R-CNN Steps in Detail

10[Girshick et al, CVPR 2014]

Justin	Johnson November	6,	2019

Summary

Lecture	15	- 120

Input	
image

Conv
Net

Conv
Net

Conv
Net

Class

Class
Class

Warped	image	
regions	(224x224)

Regions	of	
Interest	(RoI)	
from	a	proposal	
method (~2k)

Forward	each	
region	through	
ConvNet

Bbox
Bbox

Bbox

Fast	R-CNN:	Apply	
differentiable	
cropping	to	shared	
image	features

“Slow”	R-CNN:	Run	
CNN	independently	
for	each	region

Faster	R-CNN:	
Compute	proposals	
with	CNN

ConvNet

Input	image

Run	whole	image
through	ConvNet

Image features

Crop	+	Resize	features

Per-Region Network

“Backbone”	
network:	
AlexNet,	VGG,	
ResNet,	etc

Regions	of
Interest	(RoIs)
from	a	proposal
method

C
N
N

C
N
N

C
N
N

Bbox

Class

Bbox

Class

Bbox

Class

Category	and	box	
transform	per	region

Single-Stage:
Fully	convolutional	
detector

R-CNN: Impacts / Limitations

11

Cannot be
trained end-

to-end

Requires 100s
of GB of

storage space

Not suitable to
run real-time
applications

Selective
search is not
optimized for
object detection

Pioneered the
CNN for object

detection

Sets the stage
to evolve the

field

• 30K citations

• 4K papers with
title "R-CNN" 1

[1Google Scholar advanced search. allintitle:"R-CNN"]

• Run a single CNN on the entire image. Get RoIs from the image features instead of the image itself.

• Share computations across all ROIs rather than doing calculations for each proposal independently.

• Does not need to cache extracted features in the disk. The architecture is trained end-to-end with a
multi-task loss.

Fast R-CNN

12
[Paper: Girshick , ICCV 2015]
[Image: https://www.mathworks.com/]

Justin	Johnson November	6,	2019

Summary

Lecture	15	- 120

Input	
image

Conv
Net

Conv
Net

Conv
Net

Class

Class
Class

Warped	image	
regions	(224x224)

Regions	of	
Interest	(RoI)	
from	a	proposal	

method (~2k)

Forward	each	
region	through	
ConvNet

Bbox
Bbox

Bbox

Fast	R-CNN:	Apply	
differentiable	
cropping	to	shared	
image	features

“Slow”	R-CNN:	Run	
CNN	independently	
for	each	region

Faster	R-CNN:	
Compute	proposals	
with	CNN

ConvNet

Input	image

Run	whole	image
through	ConvNet

Image features

Crop	+	Resize	features

Per-Region Network

“Backbone”	
network:	
AlexNet,	VGG,	
ResNet,	etc

Regions	of
Interest	(RoIs)
from	a	proposal
method

C
N
N

C
N
N

C
N
N

Bbox

Class

Bbox

Class

Bbox

Class

Category	and	box	
transform	per	region

Single-Stage:
Fully	convolutional	
detector

• Nearly cost-free region proposals using Region Proposal Network (RPN), that shares convolutional features with the
detection network.

• The convolutional computations are shared across the RPN and the Fast R-CNN, effectively reducing the computation time.

Faster R-CNN

13

• Introduced multi-scale anchor boxes to detect objects of various sizes.

[Ren et al, NeurIPS 2015]

Slow, Fast, and Faster R-CNN

14

Justin	Johnson November	6,	2019

Summary

Lecture	15	- 120

Input	
image

Conv
Net

Conv
Net

Conv
Net

Class

Class
Class

Warped	image	
regions	(224x224)

Regions	of	
Interest	(RoI)	
from	a	proposal	
method (~2k)

Forward	each	
region	through	
ConvNet

Bbox
Bbox

Bbox

Fast	R-CNN:	Apply	
differentiable	
cropping	to	shared	
image	features

“Slow”	R-CNN:	Run	
CNN	independently	
for	each	region

Faster	R-CNN:	
Compute	proposals	
with	CNN

ConvNet

Input	image

Run	whole	image
through	ConvNet

Image features

Crop	+	Resize	features

Per-Region Network

“Backbone”	
network:	
AlexNet,	VGG,	
ResNet,	etc

Regions	of
Interest	(RoIs)
from	a	proposal
method

C
N
N

C
N
N

C
N
N

Bbox

Class

Bbox

Class

Bbox

Class

Category	and	box	
transform	per	region

Single-Stage:
Fully	convolutional	
detector

Run CNN independently for
each region

Justin	Johnson November	6,	2019

Summary

Lecture	15	- 120

Input	
image

Conv
Net

Conv
Net

Conv
Net

Class

Class
Class

Warped	image	
regions	(224x224)

Regions	of	
Interest	(RoI)	
from	a	proposal	

method (~2k)

Forward	each	
region	through	
ConvNet

Bbox
Bbox

Bbox

Fast	R-CNN:	Apply	
differentiable	
cropping	to	shared	
image	features

“Slow”	R-CNN:	Run	
CNN	independently	
for	each	region

Faster	R-CNN:	
Compute	proposals	
with	CNN

ConvNet

Input	image

Run	whole	image
through	ConvNet

Image features

Crop	+	Resize	features

Per-Region Network

“Backbone”	
network:	
AlexNet,	VGG,	
ResNet,	etc

Regions	of
Interest	(RoIs)
from	a	proposal
method

C
N
N

C
N
N

C
N
N

Bbox

Class

Bbox

Class

Bbox

Class

Category	and	box	
transform	per	region

Single-Stage:
Fully	convolutional	
detector

Justin	Johnson November	6,	2019

Summary

Lecture	15	- 120

Input	
image

Conv
Net

Conv
Net

Conv
Net

Class

Class
Class

Warped	image	
regions	(224x224)

Regions	of	
Interest	(RoI)	
from	a	proposal	
method (~2k)

Forward	each	
region	through	
ConvNet

Bbox
Bbox

Bbox

Fast	R-CNN:	Apply	
differentiable	
cropping	to	shared	
image	features

“Slow”	R-CNN:	Run	
CNN	independently	
for	each	region

Faster	R-CNN:	
Compute	proposals	
with	CNN

ConvNet

Input	image

Run	whole	image
through	ConvNet

Image features

Crop	+	Resize	features

Per-Region Network

“Backbone”	
network:	
AlexNet,	VGG,	
ResNet,	etc

Regions	of
Interest	(RoIs)
from	a	proposal
method

C
N
N

C
N
N

C
N
N

Bbox

Class

Bbox

Class

Bbox

Class

Category	and	box	
transform	per	region

Single-Stage:
Fully	convolutional	
detector

[image credit: Justin Johnson, University of Michigan]

Differentiable cropping to shared
image features

Compute region proposals with
CNNs

• Use pyramidal feature hierarchy for efficient detection of objects of various sizes.

• Model Architecture: Backbone model (VGG) and SSD head. SSD head outputs the bounding box
and object classes.

• Large fine-grained feature maps (lower level) at are good at capturing small objects and small
coarse-grained feature maps detect large objects well (higher level).

Single Shot Detector: SSD

15[Wei Liu et al, ECCV 2016]

Justin	Johnson November	6,	2019

Summary

Lecture	15	- 120

Input	
image

Conv
Net

Conv
Net

Conv
Net

Class

Class
Class

Warped	image	
regions	(224x224)

Regions	of	
Interest	(RoI)	
from	a	proposal	
method (~2k)

Forward	each	
region	through	
ConvNet

Bbox
Bbox

Bbox

Fast	R-CNN:	Apply	
differentiable	
cropping	to	shared	
image	features

“Slow”	R-CNN:	Run	
CNN	independently	
for	each	region

Faster	R-CNN:	
Compute	proposals	
with	CNN

ConvNet

Input	image

Run	whole	image
through	ConvNet

Image features

Crop	+	Resize	features

Per-Region Network

“Backbone”	
network:	
AlexNet,	VGG,	
ResNet,	etc

Regions	of
Interest	(RoIs)
from	a	proposal
method

C
N
N

C
N
N

C
N
N

Bbox

Class

Bbox

Class

Bbox

Class

Category	and	box	
transform	per	region

Single-Stage:
Fully	convolutional	
detector

Single Stage

• Eliminate RPN. Use grid cells technique to detect object of various sizes.

• Predicts offset of predefined anchor (default) boxes for every location of the feature map.

• The anchor boxes on different levels are rescaled so that one feature map is only responsible for
objects at one particular scale.

SSD: Steps

16[Wei Liu et al, ECCV 2016]

• Cat (Small Object) is captured by the 8x8 feature
map (lower level).

• Dog (Large Object) can only be detected in the 4x4
feature map (higher level)

Fine-grained Coarse-grained

• One of the first attempts to build a fast, real-time object detector.

• YOLO Frames the object detection as a single regression problem, straight from image pixels to
bounding box and class probabilities. Hence, YOLO, You Only Look Once.

• The final prediction of shape S × S × (5B + C) is produced by two fully connected layers over the whole
conv feature map.

YOLO Class of Models

17

[Paper: Redmond et al, CVPR 2016.]
[image: https://lilianweng.github.io/]

YOLO: Steps and Limitations

18

• Split the image into SxS cells. Each cell predicts

• The location of bounding boxes as (x, y, w, h), a confidence score, and a probability of
object class

• Final prediction is S × S × (5B + C). For PASCAL VOC S=7, B=2, C=20. That is why the final map
is 7x7x30

[Redmond et al, CVPR 2016.]

• Cannot detect group of small objects.
Maximum B (here, 2) objects per cell

• Irregular shaped objects

YOLOv2 and Beyond

19

• Light-weight base model,
DarkNet-19

• BatchNorm on conv layers

• Conv layers to predict anchor
boxes

• Direct location prediction

YOLOv2

• Latest in the series

YOLOv8

• Logistic regression for
confidence scores

• Multiple independent classifiers
instead of one softmax

• Skip-layer concatenation

YOLOv3

[Redmond et al, CVPR 2017]

. . .

• DETR frames the object detection task as an image-to-set problem. Given an image, the model predicts
an unordered set of all the objects present.

• Existing methods have number of components that make them complicated.

Transformer-based Detectors: DETR

20
[Carion N, Massa F et al]

RPN

• Directly predicts the final set of
detections in parallel

• During training, bipartite matching
uniquely assigns predictions with
ground truth boxes.

• Predictions with no match yield a “no
object” class prediction.

Transformer-based Detectors: DETR

21
[Carion N, Massa F et al]

• Slow convergence, 5x slower than
Faster R-CNN

• Poor detection on small objects

• Task of detecting objects from a video, such as in autonomous driving scenario

• Challenges

• Appearance deterioration

• Changes of video frames, e.g., motion blur, part occlusion, camera re-focous, rare poses etc.

• Aggregate temporal cues from different frames. Two-step baseline models (Faster R-CNN, R-FCN)

• Box-level. Post-processing of temporal information.

• Feature-level. Improve features of the current frame by aggregating that of adjacent frames.

Object Detection in Video

22

• Recent. Use one-step models such as YOLO / DETR to build end-to-end detectors.

• Precision measures how accurate are the predictions of the detector, aka, percentage of
correct predictions.

• Recall measures how good the object detector can detect all the positives.

• IoU measures the overlap between GT and predicted boundaries.

Evaluation Metrics

23

intersection

IoU =

poor goodpoor

[Bird picture: https://pixabay.com/]

• Average Precision (AP) computes the mean precision value for recall value over 0 to 1.

union

1. Run the detector for all test images

2. For each category: for each detection

1. Compute the AP, which is area under PR curve

2. Plot a point on PR curve if IoU > 0.5

3. mAP = average of AP for each category

4. COCO mAP : average AP for IoU from 0.5 to 0.95
with a step size of 0.05.

Mean Average Precision (mAP)

24

• Speed of the detection is usually quantified with FPS

0.99 0.95 0.90 0.50 0.10

All Bird detections sorted by scores

All GT Bird boxes

IoU > 0.5

Benchmark Analysis

25

Object Detection at the Edge: Considerations / Tradeoffs

26

• CPU / GPU / NPU

• Real-time applications

• High resolution images

Compute / Speed

• Some edge devices do
not support NMS

Post-Process

• Model size / #Params

• RAM / Flash

• Imbalanced memory
distribution in first conv
layers

Memory

C
o
n
si

d
e
ra

ti
o
n
s

a
n
d
 C

h
a
lle

n
g
e
s

T
ra

d
e
o
ff
s

• Single-stage models
have lower mAP

Accuracy

• Higher precision models
usually have lower FPS

FPS

• Design New Model

• Design new model architecture that runs on your target device and train it [Not Recommended]

• Smaller version of an existing model and train it, such as FOMO, MCUNetV2

• Transfer Learning

• Fine-tune an existing model on your custom data. For example, TF Detection Model Zoo.

• Pick a model that works best for your use-case and target hardware.

• Pre-training Optimizations

• Quantization-aware training of existing models

• Post-training Optimizations

• Model pruning / quantization

• Hardware specific optimizations: TFLite / TensorRT / ONNX / similar

Object Detection at the Edge: Develop and Optimize

27

Object Detection at the Edge: Example

28

• MobileNetV2 base model

• Patch-by-patch inference to solve
imbalanced memory distribution

• Receptive Field redistribution to
reduce computation overhead

MCUNetV2

[MCUNetV2: Lin et all, NeurIPS 2021]

On Pascal VOC

• 68.3% (+16.9) with 438kB SRAM

• 64.6% (+13.2) with 247kB SRAM

• Only 7 FPS

• Not tested on high resolution
images

Object Detection: What is Next?

29

• Accuracy of two-stage

• Speed of one-stage

Fastest R-CNN

• Particularly critical for
autonomous driving

3D Obj Detection

• Training at the edge
devices

• Adapt to data drifts

On-device Training

• Efficient detection in
video

• Has so many real-world
applications

Detection in Video

• More algorithms/
models

• Compatibility towards
edge devices

Transformers

• Object detection applications and challenges

• Evolution of object detection systems

• Some of the popular object detection models

• Considerations and tradeoffs of object detection for edge applications

• Optimizing object detection systems for edge devices

Conclusion

30

31

Questions / Discussions

• Off the shelf object detection models:

• TensorFlow OD model Zoo

• TensorFlow Mobile Optimized Detectors

• Detectron 2: object detection using PyTorch and model zoo

• Object detection training datasets

• Pascal VOC dataset

• MS COCO Dataset

• Object detection training frameworks

• TensorFlow Lite , Example object detection for mobile devices

• PyTorch example object detection using pre-trained models

• Get hands-on

• Train YOLOv4 using Google Colab

Resources

32

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md#mobile-models
https://github.com/facebookresearch/detectron2
http://host.robots.ox.ac.uk/pascal/VOC/
https://cocodataset.org/#home
https://www.tensorflow.org/lite/examples
https://www.tensorflow.org/lite/examples/object_detection/overview
https://towardsdatascience.com/object-detection-and-tracking-in-pytorch-b3cf1a696a98
https://colab.research.google.com/drive/1_GdoqCJWXsChrOiY8sZMr_zbr_fH-0Fg?usp=sharing#scrollTo=O2w9w1Ye_nk1

