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• LiDAR (or CoLiDAR) name derived from the RADAR acronym

• LiDAR refers to the technology that uses a laser to sense the 
environment

• Same fundamental principle as radar (or sonar)

• Emitting a signal and analyzing the bounced back signal 
(the echo)

LiDAR: Light Detection and Ranging
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Main benefit of using coherent collimated light 
beam (i.e., laser)
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radar signal

laser
light

• The laser light used by LiDAR has two interesting properties:

• It is coherent: all emitted light rays have the same 
frequency and phase 

• It is collimated: the beam of light has parallel rays and 
spread minimally



LiDAR sequence
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Corresponding camera sequence

6© 2023 Sensor Cortek inc

did you perceive the same things?



• It produces direct 3D information

• It provides accurate 3D measurements

• From under a mm to few cm depending on the distance

• It’s an active sensor that operates day and night

• It can capture information at long range

• ~200 m

• It has a large FoV

• even 360o

What makes LiDAR an attractive sensor?
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• It captures shape but not appearance

• It produces sparse data

• Sometimes only few points on an object

• It becomes noisy under fog, snow and rain

• It is still an expensive sensor

• Some are thousands of $ 

• While radars and cameras could be less than $100

• It often includes mechanical parts

However, LiDAR is not perfect
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• A collection of 
sparse 3D points

• A LiDAR frame

• Points not 
captured at 
exactly the 
same time….

The LiDAR point cloud
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• 1900s: Planck, Einstein and others “discovered” the photon

• May 16th 1960: first laser light produced (T. Maiman)

• A laser is a device that generates an intense beam 
of coherent monochromatic light

• Light Amplification by Stimulated Emission of Radiation

• Laser differs from other light sources because it emits coherent 
collimated light

• Laser light is very narrow, making it possible to see the smallest 
details with high resolution at relatively long distances.

History of Laser
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• 1960s: LiDAR initially developed for metrology and atmospheric 
research

• But the idea of probing the atmosphere with light can be dated back 
to the 1930s

• 1970s: LiDAR used for terrain mapping

• Apollo missions used laser to accurately measure Earth-Moon 
distances

• 1980s: with the advent of GPS and inertial measurement units 
(IMUs), LiDAR became very accurate

• 2005: first AV to complete the DARPA Grand Challenge (142 mile 
desert course) was equipped with a LiDAR

History of LiDAR 
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Mt St-Helens
Wikimedia commons
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1. The LiDAR emits pulsed light waves 

2. The light potentially hits a surrounding object and bounces back 
to the sensor

3. The sensor reads the bounced signal, estimates the time it took 
to return to the LiDAR and measures the reflected light energy

• Simple technology; almost instantaneous!

• Potential interference from the sun and other LiDARs

How does LiDAR work? Pulsed LiDAR
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How does LiDAR work?
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blind region

1.

3.

2.

This configuration is called bistatic (most common and cheaper)
A monostatic optical system aligns the Tx and Rx for better detection



1. LiDAR can also use continuous waves

• Frequency Modulated Continuous Wave

2. The phase of the bounced back signal will differ from the emitted signal

3. The change in phase is used to extract the distance information 

• This is done by mixing the emitted and received signals (as done in 
radar)

• Velocity is a bonus!

• Virtually no interference

• You must read a longer signal (stay longer at each point)

How does LiDAR work? FMCW Lidar
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How does LiDAR work? FMCW Lidar

www.bridgerphotonics.com/blog/frequency-
modulated-continuous-wave-fmcw-lidar



• LiDAR physics is governed by one simple equation

Distance of the object = (Speed of Light x Time of Flight) / 2

• But to be able to read the received light, you need power 
(i.e., enough photons bouncing back)

Power received ≈ Power transmitted x Cross Section x Optic area

Distance2           Distance2

• The laser cross section is the average amount of optical 
power returned by the target 

LiDAR mathematics
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LiDAR sensor taxonomy
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LiDAR

Scanning 
LiDAR

Mechanical 
Scanners

Rotating 
mirrors

Rotating 
prisms

MEMS 
mirrors

Electronic 
Scanners

Optical 
Phased 
Array

Imaging 
LiDAR

Flash LiDAR

Solid-state LiDAR
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• Three strategies:

• Scanning LiDAR

• A laser scans the scene and a single photodetector is used to read 
the returned photons

• Flash LiDAR

• The entire field of view is illuminated and a photodetector array 
captures the received photons

• Optical Phased Arrays

• Several transmitters emitting laser light at different phases enabling 
the steering of the beam (constructive/destructive interference)

Capturing a scene with LiDAR
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• Shorter range – higher frame rate

• Costly focal plane array

• Limited FoV

• Light is distributed across the FoV – more noisy

• Pixels are small – more power required

• Angular resolution determined by the pixel density

• No motion distortion

• No moving parts

Flash LiDAR
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• Longer range – smaller frame rate

• Expensive scanning mechanism

• e.g., spinning mirrors, MEMS mirrors

• or rotate everything

• Can be bulky

• LiDAR motion must be compensated

• Less tolerant to mechanical vibrations

Scanning LiDAR
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• Today’s most popular solution

• Heavier than other solutions

• Vulnerable to vibrations

• Generally includes stack of 
photodetectors to scan in 
several horizontal layers

Scanning with rotating mirrors 
(or rotate everything)
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precisionlaserscanning.com/2017/12/mems-mirrors-vs-polygon-
scanners-for-lidar-in-autonomous-vehicles/



• Uses two (or more) sequential prisms 
to steer the beam

• Shape of prism and speed of rotation 
determines the scan pattern

• Limited FoV

Scanning with rotating prisms
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Lidars for vehicles: from the requirements to the 
technical evaluation, Z. Dai et al., Conference: 
9th International Forum on Automotive Lighting, 
2021



• Micro-Electro-Mechanical System

• Quasi solid-state

• Programmable scan patterns

• Limited FoV

• Requires careful calibration

Scanning with MEMS mirrors
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preciseley.com/product/mems-scanning-mirror/



• Lower resolution – high frame rate

• Solid state

• No moving parts

• Smart zooming capability

• Interference from the antenna lobes 
limits the angular resolution

• Complex design 

• Lower production cost

• Probably the solution of the future

Optical phased array
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MEMS Mirrors for LiDAR: A Review, 
D. Wang, C. Watkins, H. Xie. Micromachines 2020, 11(5)



Rotating Prisms MEMS OPA Flash

Range Long Long Long Medium Low

Frame rate Low Low Low High High

FoV Large Limited Limited Limited Limited

Resolution High High High Adaptive Low

Power High High Low Low High

Solid Sate No No Quasi Yes Yes

Vulnerability High High High Low Low

Complexity Low Low High High Low

Cost High High High Low High

Lidar technologies
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• LiDAR operates in the near IR 
spectrum

• 780 nm to 3000 nm

• Be careful about eye safety!

• Typical field of view:

• 90°, 180° or 360°

• Depth resolution determined by the 
temporal sampling frequency

• ∆D = c / 2f

• e.g., a depth resolution of 1 cm 
requires a 1.5 GHz sampling rate

Some LiDAR specs
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• Angular resolution determined by the 
scanning point rate

• e.g., 0.1° corresponds to 18 cm at 100 m

• Pulse frequency 

• e.g., 2 ns corresponds to a range 
resolution of 3 cm

• Pulse frequency determines the 
number of points per second per layer

• e.g., 40 kHz

Specs are usually given for 80% 
Lambertian reflectivity



• When the vehicle moves, the LiDAR is scanning a moving scene

• Which will distort the point cloud

• This distortion is proportional to the vehicle’s speed and 
inversely proportional to laser scanning rate

• Solution: using an inertial measurement unit in order to 
compensate for the sensor motion

• IMUs provide acceleration and angular velocity

• Assumption: the ego vehicle motion has constant angular and 
linear velocities

LiDAR motion compensation using IMU

27© 2023 Sensor Cortek inc



LiDAR motion compensation using IMU
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https://www.mathworks.com/help/lidar/ug/m
otion-compensation-in-lidar-point-cloud.html

Before motion compensation After motion compensation



• A LiDAR sensor produces a frame of 3D points

• A point cloud

• This point cloud has to be processed and analyzed in order to 
interpret the scene

• e.g., detect objects on the road

• But LiDAR data is sparse and unstructured

• Signal processing (convolution) prefers regular grid sampling 

• LiDAR needs to be preprocessed to build a more suitable 
representation 

Processing LiDAR data for detection
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• Possible representations:

• Point sets

• Voxelization

• Bird’s eye view

• Point pillars encoding

• Frontal image generation

• Sparse convolution

LiDAR representation strategies
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• Point sets

• Can we work directly on the point cloud?

• Point-based representation

• Voxelization

• Bird’s eye view

• Point pillars encoding

• Frontal image generation

• Sparse convolution

LiDAR representations
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• The idea is to consume an unordered set of 3D points

• Transformations are learned to normalize the data

• Global point features are learned from the set

• Point cloud has to be segmented into small regions of 
interest

• More difficult to apply in a complex scene composed of 
many objects

Point-based representations
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C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep
learning on point sets for 3d classification and segmentation.
Proc. Computer Vision and Pattern Recognition (CVPR) 2017



Point-based representations
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• The idea is to 
consume an 
unordered set of 3D 
points



• Point sets

• Voxelization 

• e.g., occupancy grid

• Bird’s eye view

• Point pillars encoding

• Frontal image generation

• Sparse convolution

LiDAR representations
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Attribute Filtering of Urban Point Clouds Using Max-Tree on Voxel Data, F. 
Guillotte, Mathematical Morphology and Its Applications to Signal and Image 
Processing, 2019.



• A 3D voxel grid is created in which 
each voxel contains:

• A scalar value

• A vector made of statistics 
computed from the points inside 
the voxel

• Mean, variance, reflectance, …

• By nature, the occupied voxels are 
very sparse

• 3D convolution expensive and 
inefficient

Voxelization
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Wang, D.Z.; Posner, I. Voting for voting in online point cloud 

object detection. In Proceedings of the Robotics: Science and 

Systems, Rome, Italy, 13–17 July 2015



• Voxel feature encoding (VFE) is used

• from randomly sampled points in 
each voxel

• using point coordinates and 
reflectance

• and a fully connected network 
transformation

• 3D convolution is applied on the VFE

Voxelization: VoxelNet
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Y. Zhou and O. Tuzel. Voxelnet: End-to-end learning for 

point cloud based 3d object detection. In CVPR, 2018

VFE 
learning

Convolution
layer

Detection
network



Mean Average Precision (%)

Easy Medium Hard

VoxelNet 89.35 79.26 77.39

Vehicle Detection results – KITTI Dataset
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• Point sets

• Voxelization

• Bird’s eye view

• Point pillars encoding

• Frontal image generation

• Sparse comvolution

LiDAR representations
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• Computationally efficient

• Preserve the metric space for objects 
on the road

• The representation produces an 
image

• Height becomes a channel

• Image detection network can be 
used

• Objects are not occluded

Bird’s eye view network : Pixor
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Yang, B., Luo, W., Urtasun, R.: PIXOR: real-time 3D 
object detection from point clouds. CVPR (2018)



Vehicle Detection results – KITTI Dataset
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Mean Average Precision (%)

Easy Medium Hard

VoxelNet 89.35 79.26 77.39

Pixor 81.7 77.05 72.95



• Voxelization 

• Bird’s eye view

• Pillars encoding

• Each pillar encodes point 
distance to centroid and 
reflectance

• Simplified PointNet is used

• Frontal image generation

• Sparse convolution

LiDAR representations
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becominghuman.ai/pointpillars-3d-point-clouds-bounding-box-
detection-and-tracking-pointnet-pointnet-lasernet-67e26116de5a



Mean Average Precision (%)

Easy Medium Hard

VoxelNet 89.35 79.26 77.39

Pixor 81.7 77.05 72.95

PointPillar 92.07 87.74 86.65

Vehicle Detection results – KITTI Dataset
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• Voxelization

• Bird’s eye view

• Point pillars encoding

• Frontal image generation

• Sparse convolution

LiDAR representations
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• BEV + LiDAR project + Camera

• BEV is used to propose potential objects

• Multiview features are then uses to predict objects

Object-based feature extractor: MV3D
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Chen, X.; Ma, H.; Wan, J.; Li, B.; Xia, T. Multi-view 3d 
object detection network for autonomous driving. In 
Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition, Honolulu, HI, USA, 21–26 July 
2017



Mean Average Precision (%)

Easy Medium Hard

VoxelNet 89.35 79.26 77.39

Pixor 81.7 77.05 72.95

PointPillar 92.07 87.74 86.65

MV3D 86.55 78.1 76.67

Vehicle Detection results – KITTI Dataset
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Frontal view fusion
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• All images are fused together

• Including the camera image

• Lidar/camera fusion

• BGF fusion operator

Sensor Fusion Operators for Multimodal 2D Object Detection, 
M.M. Pasandi, T. Liu, Y. Massoud, R, Laganiere, ISVC 2022



Mean Average Precision (%)

Easy Medium Hard

VoxelNet 89.35 79.26 77.39

Pixor 81.7 77.05 72.95

PointPillar 92.07 87.74 86.65

MV3D 86.55 78.1 76.67

BGF Fusion 94.90 88.40 78.38

Vehicle Detection results – KITTI Dataset
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• Voxelization 

• Bird’s eye view

• Pillars encoding

• Frontal image generation

• Sparse convolution

• When the data is very sparse, regular convolution becomes very 
inefficient

• The idea is to compress the representation by ignoring zero values

• To this end, look-up tables are often used

LiDAR representations
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SECOND: Sparse convolution on point features
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SECOND: Sparsely Embedded Convolutional 
Detection by Yan Yan, Yuxing Mao, Bo Li, Sensors 
2018.



Mean Average Precision (%)

Easy Medium Hard

VoxelNet 89.35 79.26 77.39

Pixor 81.7 77.05 72.95

PointPillar 92.07 87.74 86.65

MV3D 86.55 78.1 76.67

BGF Fusion 94.90 88.40 78.38

SECOND 91.92 87.92 85.39

Vehicle Detection results – KITTI Dataset
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PV-RCNN: Point-based + Voxels
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PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection (2020)
Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping Shi, Xiaogang Wang, Hongsheng Li, IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR).



Mean Average Precision (%)

Easy Medium Hard

VoxelNet 89.35 79.26 77.39

Pixor 81.7 77.05 72.95

PointPillar 92.07 87.74 86.65

MV3D 86.55 78.1 76.67

BGF Fusion 94.90 88.40 78.38

SECOND 91.92 87.92 85.39

PV-RCNN 92.86 88.93 88.74

Vehicle Detection results – KITTI Dataset

52© 2023 Sensor Cortek inc



• Solving the LiDAR sparsity problem

• The farther the object, the sparser the point density

How to further improve detection?
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• Depth completion network

• Can be used to densify the point cloud

Pseudo LiDAR
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www.mdpi.com/1424-8220/22/18/6969

Depth Completion with Twin Surface Extrapolation at Occlusion 
Boundaries, Saif Imran, Xiaoming Liu, Daniel Morris, CVPR 2021



BTC: using shape completion
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Behind the Curtain: Learning Occluded 
Shapes for 3D Object Detection, Qiangeng
Xu, Yiqi Zhong, Ulrich Neumann, AAAI 2022



Mean Average Precision (%)

Easy Medium Hard

VoxelNet 89.35 79.26 77.39

Pixor 81.7 77.05 72.95

PointPillar 92.07 87.74 86.65

MV3D 86.55 78.1 76.67

BGF Fusion 94.90 88.40 78.38

SECOND 91.92 87.92 85.39

PV-RCNN 92.86 88.93 88.74

BTC 93.46 89.53 87.44

Vehicle Detection results – KITTI Dataset
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LiDAR and pseudo-LiDAR: SFD
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• Lidar/camera fusion

Sparse Fuse Dense: Towards High Quality 3D Detection with Depth 
Completion, Wu, Xiaopei and Peng, Liang and Yang, Honghui and Xie, Liang 
and Huang, Chenxi and Deng, Chengqi and Liu, Haifeng and Cai, Deng}, 2022



Mean Average Precision (%)

Easy Medium Hard

VoxelNet 89.35 79.26 77.39

Pixor 81.7 77.05 72.95

PointPillar 92.07 87.74 86.65

MV3D 86.55 78.1 76.67

BGF Fusion 94.90 88.40 78.38

SECOND 91.92 87.92 85.39

PV-RCNN 92.86 88.93 88.74

BTC 93.46 89.53 87.44

SFD 95.85 91.92 91.41
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Vehicle Detection results – KITTI Dataset



LiDAR densification: UYI
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• Pseudo LiDAR module

Use Your Imagination: A Detector-Independent Approach For LiDAR
Quality Booster, Z. Zhang, T. Liu, R. Laganiere, 2023

LiDAR
detector 
network



LiDAR densification: UYI
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• Vehicle detection performance boosting

Use Your Imagination: A Detector-Independent Approach For LiDAR
Quality Booster, Z. Zhang, T. Liu, R. Laganiere, 2023



Conclusion
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• LiDAR provides accurate 3D detection

• An essential component in ADAS/AV

• LiDAR technology will continue to evolve

• Improve density

• Lower power

• Solid-state

• Lower cost

• Radar / LiDAR Convergence
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Reading list on LiDAR and AI


