2023 embedded VISION SUMMIT

Developing a Computer Vision System for Autonomous Satellite Maneuvering

Andrew Harris, PhD Senior Systems Engineer SCOUT Space Inc.

What We're Talking about Here

- 1. SCOUT's pose estimation approach and competition performance
- 2. How we did and lessons learned
- 3. Pose estimation demo
- 4. Future work + challenges for the field

SCOUT: Perception for Spacecraft

- SCOUT is developing perception systems to enable the nextgeneration of autonomous satellites to avoid debris and keep space safe
- Two major domains:
 - Close range, proximity operations
 - Long-range, space domain awareness

Space Domain Vision: Is It Hard, or Just Different?

Challenges:

- Extremely data-limited
- Sensitive to safety, correctness issues
- Relatively compute constrained

Prospects:

- Low-clutter, typically simple backgrounds
- "Knowable" lighting conditions, dynamics
- Well-defined shapes (usually)

sunlamp

SCOUT vs. Traditional Approaches

embedded

SCOUT: Perception Systems

New Parameters

Trained Model

Model Development

- Target modeling
- Synthetic dataset generation
- Pipeline buildout
- Evaluation

Verification + Validation

- Evaluation on reserved dataset
- Robustness testing
- MLOps

-Orbit Deployment

Field Data

SUMMIT

embedded

Deployment

 Downlink full images, estimated attributes

SCOUT Target Database

SCOUT: The Long Road to Pose

© 2023 SCOUT Inc

ESA Kelvin Pose Estimation Challenge: A Motivating Problem

- ESA competition to improve image-driven pose estimation technology
 - Inspired by the Prisma formation flight mission (right)
 - SPEED+ dataset: ~10k physical images from SLAB testbed, 60k simulated images from SLAB simulator
- Scored based on sum of position and attitude estimation error

© 2023 SCOUT Inc

ESA Kelvin Pose Estimation Challenge: Closing the Domain Gap

sunlamp

First Attempt: Blender

- Blender used as scene generation suite of choice
- Naïve / unrefined Earth, S/C parameters
- No noise, star background; only resolution challenges

"Are the Synthetics Realistic?"

Blender model of Tango from CAD

Photorealistic render of Tango

- Render pipeline generally *looks* good, but is not necessarily realistic
- Higher reflectivity than lab Tango
- Some component mismatches from real mock-up (see right)
- Missing diffuse back-reflection

Does it matter, and how do we fix it?

Improving Realism: Things to Consider

embedded VISION SUMMIT

- Lighting
 - Lighting conditions change rapidly on-orbit
 - Streaking/exposure
 - Sun angle / glint
- Blur sources (focus, motion)
- Detector noise
 - Shot, dark current
 - Cosmic rays

Right: Photograph of an Iridium flare against star background

Left: Long exposure showing multiple suspected cosmic ray hits

Stanford Space Rendezvous Laboratory: Augmenting Data with Synthetic Noise

Augmentation	Commands			
Brightness & Contrast	RandomBrightnessContrast			
Random Erase (Zhong et al., 2020)	CoarseDropout			
Sun Flare	RandomSunFlare			
Blur	OneOf(MotionBlur, MedianBlur, GlassBlur)			
Noise	<pre>OneOf(GaussNoise, ISONoise)</pre>			

RandomSunFlare

Stanford Space Rendezvous Laboratory: Improving Performance with Synthetic Data

Config.	Source	lightbox				sunlamp			
		IoU [-]	<i>E</i> _T [m]	E_{R} [°]	E_{pose}^* [-]	IoU [-]	<i>E</i> _T [m]	$E_{\mathbf{R}}$ [°]	E_{pose}^* [-]
Baseline	E H	0.853 -	0.518 0.506	24.678 21.994	0.509 0.465	0.867 -	0.641 0.735	47.893 47.546	0.937 0.955
+ Random Erase	E H	0.811 -	0.756 0.665	24.168 22.544	0.534 0.494	0.510	2.766 2.295	79.232 80.778	1.771 1.744
+ Sun Flare	E H	0.892	0.314 0.347	11.670 10.018	0.252 0.230	0.825	0.875 0.722	33.239 31.504	0.709 0.661
+ Style Aug.	E H	0.918	0.175 0.271	8.004 6.479	0.169 0.158	0.919	0.225 0.307	12.433 11.065	0.254 0.245

Competition Results

© 2023 SCOUT Inc

Validation

Lightbox

Rank	Team Name	norm. err pose	norm. err rot	Best Score		
1	TangoUnchained	0.0179	0.0556	0.073498689		
16	SCOUT Inc	0.0909	0.8357	0.926615725		
35	baseline	0.3686	2.2038	2.572462691		
Sunlamp						
Rank	Team Name	norm. err pose	norm. err rot	Best Score		
1	lava1302	0.0113	0.0476	0.058860147		
14	SCOUT Inc.	0.0832	1.0750	1.158212043		
35	baseline	0.3736	2.2002	2.573856284		

¹ Burkhardt Z., Spessert, E., West, S., Gallucci, S., et al. "Trajectory Planning for a Proximity Operations Flyby Operation on the Tenzing Mission." In AAS Guidance and Control Conference 2022. AAS-22-155. February 2022.

Demo of SV-50 Inference

© 2023 SCOUT Inc

Creating a Model to Generate Synthetic Data: SCOUT's System's Capabilities

- Renders at ~3000 images/hour
 - Specific trajectory
 - Randomized ranges/pose/backgrounds
 - Earth or stars background for realistic image generation
 - Color/randomized image background for general training

embedded VISIOC

SUMMIT

SCOUT Render Pipeline Demo

cer_process.py 2 🏾 🌵 camera_manage	r_process.py 🗧 cameras.log	■ inferencer.log	🅏 camera_process.py	🕏 inference.py	competition_inference.py	🔮 simulated_camera.py 🗙 🔮
scout_vision > 🗢 simulated camera.pv >	> 😪 SimulatedCamera > 😚 🛛 init					
B Scout Command Interface					– 🗆 ×	
4		N. 99- 10 - 24	TIME OF LEADER SE, SECOND SE			
6		Rotorer street, eff. 72, 0.				4
7 2022-12-08 02:46:07 8 Connected to Server!	2022-12-08 02:46:05 Connected to TLM Serve					
9 2022-12-08 02:57:51 10 Sending Command: 11 Camera Take Snapshot	2022-12-08 02:57:50 Sending TLM ttag=1670486270.21					
12 id: 1670486271 12 args:3 1 1 1	2022-12-08 02:57:51 Received TLM:				All and the second s	
14 15	-17000.21 -16255.56					
17 2022-12-08 02:57:51	RelativeAttitudeQ:		and the state		13 250	
18 Camera_Take_Snapshot	0.36	신요 아들날 흔들	Course and			
20 status: OK	0.37	1.	ALL STREET			
21 First image id: 190		a Chuckhear a' an 199				
23					Nº A COM	
24	است. ما، ما				1 - 1 - 4 - 5 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5	
25 Send Clear Exit	Connect Connect ILM				13	
20 Camera_Take_Snapsho	tFilenames/pathnames	18 AL		1 - C - C - T	No and Sugar Martin	
28 29				9	144	
30 31 else:		and the second		입 같은 말을 가		
PROBLEMS 2 OUTPUT DEBUG CON:	SOLE TERMINAL PORTS JUP					
2022-12-07 23:57:52.369.INFO.upda	ting response tracker!					
2022-12-07 23:57:52,369.INFO.atte 2022-12-07 23:57:52,370.INFO.file	mpting to update the snap in id returned from snap comma	dex file nd: 190 from b'\xbe\x0	00/x00/x00/x00/x00/x00			
<pre>==> scout_vision/logs/inferencer. 2022-12-07 23:57:52,370.INF0.Atte</pre>	log <== mpting prediction on /mnt/ss	d/scout/data/output/00	0000000190			
<pre>=> scout_vision/logs/cameras.log 2022-12-07 23:57:52,371.INF0.chec</pre>	¦<== king 1 for data!					

Demo of SV-50: Real-Time Inference

Integrating Real Data and Conclusions

© 2023 SCOUT Inc

Where's the Real Data?

- Images are big vs. space downlink pipes
 - 9.6 kilobaud connections are very common
- Emphasizing an iterative approach for data collection campaigns
 - Tenzig (2021): Noise + lens parameters
 - Near-term missions (2024): Target and SDA images in different lighting conditions

Right: Actual photo from SV-50 on Tenzing

Left: Simulated image from SCOUT's synthetics

Conclusions

- Space is hard, not impossible
- Synthetics are an inevitable part of space-based ML systems, so we have to learn to live with them
- ML pipelines seem to generalize well from synthetics to physical data in the lab, given synthetic images with similar noise + aberrations
- Standards and references for verification and testing are **essential** for deploying future machine vision systems in space (and on Earth!)

- Flight experiments! 3 (!!!) SCOUT systems will fly in 2024
- Automated verification + validation pipelines
- Learning pose estimation for arbitrary or damaged spacecraft (=unknown geometry a-priori)

Synthetic Data: Tutorials and Examples

Synthetic Data Resources

SCOUT: Spacesight https://spacesight.scout.space/

Space ML https://spaceml.org/

Synthetic Data Tutorial <u>https://bit.ly/synth-data</u>

SLAB Resources

SLAB Website https://slab.stanford.edu/

SLAB Pose Estimation Paper arXiv:2203.04275v1

Robotic Testbed for Models arXiv:2108.05529v2

INFO@SCOUT.SPACE

50

PROPRIETARY @ 2022 SCOUT Inc.

Backup Material

© 2023 SCOUT Inc

SCOUT: Perception Systems

SCOUT-VISION

Relative Navigation, Satellite Servicing

SV-250

Local Situational Awareness

NITE-OWL

Long-Range & Cislunar

© 2023 SCOUT Inc

embedded **SCOUT vs. Traditional Approaches** SUMMIT SC UT Images Pose Pose Pipeline (ML) **Traditional Pose Estimation** Pose Preprocessing 0 **PnP Solver** Images SCOUT **Keypoint** Extrazorioscout 29

Previous Work: Proximity Guidance

SCÖUT

SCOUT: Remote-Sensing in Space On-Orbit Spacecraft Inspection

Autonomous Edge System Considerations: Quality of Data

1.Data continuity: the system must be able to handle drop-outs in detection from CV model

- 2.Data reliability: the system needs physically-informed models to mitigate false-positive or extremely inaccurate CV measurements
- 3.SCOUT has developed estimation filters which propagate target position/pose based on existing data and equations of motion across signal dropouts and which improve effective relative navigation accuracy

Evaluating Trustworthiness of Autonomous Machine Learning Systems

 Your system operates as expected in the simulated environment, how to improve confidence levels that system will operate as expected when deployed to realworld environment

ESA Kelvin Pose Estimation Challenge: Loss Function/Scoring

$$score_{pose}^{(i)} = score_{orientation}^{(i)} + score_{position}^{(i)}$$

score =
$$\frac{1}{N} \sum_{i=1}^{N} \text{score}_{pose}^{(i)}$$

Loss Function Challenges

- Lots of spacecraft, including Tango, exhibit various symmetries
 - "off by 90/180" errors are extremely easy to come by
- Range is a major factor
 - <300 m: Fully resolved, maximum danger
 - >300 m: maybe partially resolved (can't get orientation), less dangerous
 - >2 km: Non-resolved, dynamics less linear

Determining Dataset Requirements: Resolution

Lower resolution image of Tango spacecraft

Higher resolution image of Tango spacecraft

Determining Dataset Requirements: Resolution vs. Exposure

Determining Dataset Requirements: Fidelity and Resolution – Exposure Time

Underexposed image of Tango spacecraft

SC

Properly exposed image of Tango spacecraft exhibiting motion blurring