2023 embedded VISION SUMMIT

Detecting Data Drift in Image Classification Neural Networks

Dr. Spyros Tragoudas

Professor and School Director Southern Illinois University Carbondale

Joint work with: Danushka Senarathna¹, Kiriti Nagesh Gowda², Mike Schmit²

1. School of ECBE Southern Illinois University Carbondale, IL

2. ML Computer Vision Group, Advanced Micro Devices, Inc. Santa Clara, CA

Overview

- Introduction
- Contribution
- Motivation
- Proposed Methodology
- Experimental Results
- Conclusions

Introduction

□ Image classification applications

- Self-driving cars
- Mobile computing devices
- Medical imaging, etc.
- Data drift: A change in the input data distribution that impacts the accuracy of machine learning model

□ Reasons for data drifts:

- Noise effects
- Weather effects
- Camera degradation
- Change in the lighting, etc.

Introduction

- Accuracy of a neural network model degrades due to data drift
- Example: MNIST digits with Gaussian noise
 - Classify digits using a convolutional neural network
 - Validation accuracy = 99.10%
 - Test the model for images with different magnitudes of Gaussian noise
 - Accuracy drops below 80% when noise variance (σ^2) is 0.2

Sample images with different levels of Gaussian noise

Introduction

□ <u>Objective</u>:

- Develop an approach to cope with data drifts of any type
- Detect and identify the drift type and estimate the drift magnitude during the network's operation
- Data drifts considered in this work,
 - Noise effects
 - Gaussian
 - Poisson
 - Salt & Pepper
 - Weather effects:
 - Snow
 - Fog
 - Shadow

Contribution

Previous work

- [1] considers data drifts due to outliers (unseen classes)
- Not aware of detection methods that identify the drift magnitude in images except for noise effects [2]

[1] Dube, Parijat, and Eitan Farchi. "Automated detection of drift in deep learning based classifiers performance using network embeddings." In Engineering Dependable and Secure Machine Learning Systems: Third International Workshop, EDSMLS 2020, New York City, NY, USA, February 7, 2020.

[2] Kokil, Priyanka, and Turimerla Pratap. "Additive white gaussian noise level estimation for natural images using linear scale-space features." Circuits, Systems, and Signal Processing 40, no. 1 (2021): 353-374.

Contribution

 A novel statistical method to estimate the drift magnitude for any each possible drift type

Motivation

- □ The distribution of the prediction probabilities is sensitive to the drift magnitude
- Prediction probabilities tend to decrease as the drift magnitude increases
- Example:
 - MNIST digit classification with Gaussian noise for two different noise levels.
 - For clean images, most of the prediction probabilities for all classes are >0.99.

Thresholding

- □ A "threshold probability" value is introduced for each class
- □ The percentage of predictions above the "threshold probability" is computed for each class
- □ This percentage varies for each class at different drift magnitudes
- Drift magnitude is determined based on the percentage of predictions above class thresholds

Thresholding

Example

- MNIST digit classification with Gaussian noise, threshold set to 0.98 for all classes
- Three noise levels $\sigma^2 = 0$, $\sigma^2 = 0.04$, $\sigma^2 = 0.08$

Class	Percentage above threshold										
	$\sigma^2 = 0$	$\sigma^2 = 0.04$	$\sigma^2 = 0.08$								
0	99.32%	95.41%	85.99%								
1	98.93%	87.03%	43.67%								
2	97.49%	92.05%	81.14%								
3	98.01%	92.11%	75.95%								
4	98.49%	88.18%	75.65%								
5	96.89%	93.13%	80.42%								
6	98.18%	94.37%	82.69%								
7	97.46%	87.06%	68.85%								
8	96.98%	91.82%	76.46%								
9	95.70%	76.75%	43.70%								

Proposed Methodology: Thresholds

embedded VISION SUMMIT

- □ Thresholds for each class, drift type, and drift magnitude:
 - For each drift type: Obtain prediction probabilities and prediction labels for different drift magnitudes
 - for each class:

```
for each magnitude:
```

```
compute cumulative distribution function (CDF)
```


Proposed Methodology: Data Structures

□ Example: MNIST with Gaussian noise

Data Structures: Threshold Dictionary and Expected Percentage Table

Class Magnitude	0	1	2	3	4	5	6	7	8	9
None	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
M1 ($\sigma^2=$ 0.04)	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
M2 ($\sigma^2=0.08$)	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
M3 ($\sigma^2=0.12$)	0.98	0.94	0.98	0.98	0.98	0.98	0.98	0.96	0.98	0.89
M4 ($\sigma^2=0.16$)	0.98	0.71	0.98	0.96	0.95	0.97	0.97	0.91	0.98	0.76
M5 ($\sigma^2=0.20$)	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98

Class Magnitude	0	1	2	3	4	5	6	7	8	9
None	99.3%	98.9%	97.5%	98.0%	98.5%	96.9%	98.2%	97.5%	97.0%	95.7%
M1 ($\sigma^2=0.04$)	95.4%	87.0%	92.1%	92.1%	88.2%	93.1%	94.4%	87.1%	91.8%	76.8%
M2 ($\sigma^2=0.08$)	86.0%	43.7%	81.1%	76.0%	75.7%	80.4%	82.7%	68.9%	76.5%	43.7%
M3 ($\sigma^2=0.12$)	71.1%	32.8%	66.1%	55.7%	51.7%	64.8%	63.9%	56.0%	59.7%	47.2%
M4 ($\sigma^2=0.16$)	56.1%	56.4%	50.0%	42.7%	47.7%	51.1%	51.2%	57.7%	45.6%	50.6%
M5 ($\sigma^2=$ 0.20)	43.2%	7.5%	39.1%	21.9%	26.3%	35.0%	31.4%	34.9%	36.6%	10.2%

Threshold Dictionary

Expected Percentage Table (percentages above thresholds)

embedded

Proposed Methodology: Magnitude Estimation

<u>Magnitude Estimation:</u>

- Obtain prediction probabilities for a given set of images
- Apply the threshold dictionary for the prediction probabilities
- Obtain the percentages above the thresholds of each magnitude
- Compute the difference between the observed percentages and the expected percentages for each magnitude
- Estimated magnitude: Corresponds to the minimum difference between the expected and the observed percentages
- Example: MNIST digit classification with $\sigma^2 = 0.04$ Gaussian noise

Magnitude	0	1	2	3	4	5	6	7	8	9	Magnitude	Absolute sum of errors	
None	95.4%	87.0%	92.1%	92.1%	88.2%	93.1%	94.4%	87.1%	91.8%	76.8%	None	5.4%	
M1 ($\sigma^2 = 0.04$)	95.4%	87.0%	92.1%	92.1%	88.2%	93.1%	94.4%	87.1%	91.8%	76.8%	M1 ($\sigma^2 = 0.04$)	2.7%	Estimated
M2 ($\sigma^2 = 0.08$)	95.4%	87.0%	92.1%	92.1%	88.2%	93.1%	94.4%	87.1%	91.8%	76.8%	M2 ($\sigma^2 = 0.08$)	20.9%	Magnitud
M3 ($\sigma^2 = 0.12$)	95.4%	91.1%	92.1%	92.1%	88.2%	93.1%	94.4%	90.0%	91.8%	89.7%	M3 ($\sigma^2 = 0.12$)	37.9%	•
M4 ($\sigma^2 = 0.16$)	95.4%	98.5%	92.1%	94.3%	91.9%	93.9%	95.5%	93.5%	91.8%	94.5%	M4 ($\sigma^2=0.16$)	45.6%	•
M5 ($\sigma^2 = 0.20$)	95.4%	87.0%	92.1%	92.1%	88.2%	93.1%	94.4%	87.1%	91.8%	76.8%	M5 ($\sigma^2=0.20$)	63.7%	

Observed percentages after applying the class thresholds of all magnitudes

Error between the expected and the obtained percentage

SIU Southern Illinois University AME embedded

Alleviating Underestimation

- □ The estimated magnitude does not always exactly match the actual one
- □ Underestimation can be harmful and over-estimation can raise false alarms
- □ Adjust the initial estimation to alleviate underestimation
- □ For a given estimated magnitude \widehat{M} , let $M_{\widehat{M}}^{max}$ be the highest possible actual magnitude
- \Box Let \widehat{M}_L be the highest estimated magnitude among all magnitudes below M_0^{max}
- \Box In the example, $M_0^{max} = 0.02$ and $\widehat{M}_L = 0$
- \Box Adjust the initial estimation \widehat{M} to final estimation M_e
 - For all \widehat{M} such that $\widehat{M} \leq \widehat{M}_L$, $M_e = 0$ -> Region we underestimate
 - For all \widehat{M} such that $\widehat{M} > \widehat{M}_L$, $M_e = M_{\widehat{M}}^{max} \rightarrow$ Region we may overestimate

noise in MNIST dataset

Experimental Results

□ MNIST digit classification neural network

- 7500 images used in the setup
- 2500 images used in the testing

AMD

University

Gaussian, Poisson and Salt & Pepper are considered with 20 magnitudes per type

embedded

Generalization: Uneven Distribution in Classes

- Expected percentage table: Sensitive to the percentage of images from each class
- □ The method is extended to cope with different distributions of images among the classes
- □ Uses the confusion matrix (and a normalization) after applying the thresholds for each type and magnitude

embedded

Generalization

□ Obtain a system of linear equations

 $y_{1} = a_{1,1} \cdot x_{1} + a_{1,2} \cdot x_{2} + \dots + a_{1,n} \cdot x_{n}$ $y_{2} = a_{2,1} \cdot x_{1} + a_{2,2} \cdot x_{2} + \dots + a_{2,n} \cdot x_{n}$ $y_{n} = a_{n,1} \cdot x_{1} + a_{n,2} \cdot x_{2} + \dots + a_{n,n} \cdot x_{n}$

- $\Box X_{n \times 1} =$ number of images from each class
- $\Box \quad Y_{n \times 1} = \text{number of predicted images for each class}$
- \Box T = the total number of images

□ Find a unique solution for $X_{n \times 1}$ by solving $Y_{n \times 1} = A_{n \times n} \times X_{n \times 1}$

- \Box For each drift magnitude, compute estimation error $E = T (x_1 + x_2 + ... + x_n)$
- □ Estimated magnitude: The drift magnitude with the minimum estimation error

 x_i = number of images from class *i* in the dataset y_i = number of images predicted as class *i* above the respective threshold

Experimental Results: MNIST with Uneven Class Distributions

- 7500 images in the setup
- Three noise types are considered with 5 drift magnitudes in each
- 5 different distributions of the input data are considered for each magnitude

embedded

Experimental Results: CIFAR10 with Uneven Class Distributions

- □ CIFAR10 classification using ResNet18
 - 7500 images used in the setup phase
 - Three weather effects are considered with 5 drift levels in each
 - 5 different distributions of the input data are considered for each drift level

embedded

- Proposed method can be used to detect and estimate the magnitude of data drifts in image classification neural networks due to various effects on images
- □ Experimental results show that the method has a 100% detection rate
- □ Drift magnitude can be estimated with high accuracy
- □ The method is applicable in classification applications where different types of data drifts may occur
- □ This methodology can be used to detect any type of data drifts

A preliminary version of this work will appear in:

- The proceedings of the IEEE International Conference on High-Performance Switching and Routing (HPSR 2023),
- The International Workshop on Resource-Constraint Machine Learning (RCML 2023) that is co-hosted with HPSR 2023.

