
Learning Compact DNN
Models for Embedded
Vision

Shuvra S. Bhattacharyya
University of Maryland, College Park,
USA and
INSA/IETR Rennes, France

With contributions from
Xiaomin Wu and
Rong Chen

• Pruning:

• Remove neurons or parameters that provide little or no contribution to

inference accuracy

• Distillation:

• Transfer knowledge from a large model to a small model

• Neural Architecture Search:

• Optimize the number, types and connectivity of network layers

Popular Methods to Compress DNN Models

2© 2023 University of Maryland

Pruning: Structured and Unstructured

3© 2023 University of Maryland

Multilayer
Perceptron:
hidden layer
example

• Implementation-
friendly

• Supports common
ML libraries

• More general
• Needs specially-

designed
hardware/
software for sparse
computation

Pruning: Structured and Unstructured

4© 2023 University of Maryland

CNN-layer
filter
example

• Implementation-
friendly

• Supports common
ML libraries

• More general
• Needs specially-

designed
hardware/
software for sparse
computation

• Deep Compression [Han 2015]

• Uses weight threshold to prune. Leads to unstructured network architecture.

• Inference-time channel reduction without retraining [He 2017]

• Applies a criterion based on Lasso Regression.

• ThiNet — weight-magnitude-based structured pruning [Luo 2017]

• Layer-wise relevance propagation (LRP) [Yeom 2021]

• Uses a novel criterion, layer-wise relevance propagation, to select weights for

structured pruning.

5

Previously-developed Pruning Methods

© 2023 University of Maryland

NeuroGRS was designed to derive compact DNN models for neural decoding systems.
It can also be applied to generate compact DNN models for other embedded vision applications.

Calcium
imaging of

brain

Motion
correction

Neuron
detection

Neural
signal

extraction
Neural

decoding

In real-time: 10 Hz
Image source:
https://www.nature.com/articles/npp2014206,
https://www.youtube.com/watch?v=d5zK1RUJCiU&ab_c
hannel=MocomiKids.

NeuroGRS

Calcium-imaging-based
neural decoding system:
Overview

© 2023 University of Maryland 6

Design of NeuroGRS

Prediction of mouse's behavior
from analysis of neural signals.

E.g., whether or how fast
the mouse is going to move.

https://www.nature.com/articles/npp2014206

• GRS stands for Greedy inter-layer order with Random Selection of intra-layer
units.

• Combines pruning and architecture search with an emphasis on structured
pruning.

• Takes into consideration both the model architecture and trained weights.

• Suitable for further compressing small DNN models for optimized embedded
implementation.

• Accompanied by a dataflow-based inference system for efficient inference.

Overview of NeuroGRS

7© 2023 University of Maryland

• Structures determine performance for shallow DNNs; learned weights can be
retrained from scratch [Liu 2018] [Frankle 2018].

• This finding is especially relevant for embedded vision, where shallow DNNs
may be preferable due to resource constraints.

• Using a large compression rate (number of removed neurons or connections)
without retraining can significantly degrade inference accuracy [Li 2016] [Hu
2016].

© 2023 University of Maryland 8

Foundational Findings Applied in NeuroGRS

• Specify initial CNN structure in Keras Tensorflow format.

• If pretrained, load pretrained weights. GRS can either train first and
then prune or perform direct-prune from pretrained model.

• Provide training, validation, and testing data sets.

• Configure hyperparameters.

• Run NeuroGRS to execute the pruning process.

• Output  compact model implemented in Python/C/C++, suitable for

inference on embedded platforms

How to Use the NeuroGRS Software Package

9© 2023 University of Maryland

Using NeuroGRS (Continued)

10© 2023 University of Maryland

Dataflow graph for NeuroGRS:

© 2023 University of Maryland 11

GRS Method (1)

Mi: an overparameterized DNN model candidate

P(Mi): a pruned DNN model candidate

vi: a selection criterion

k: the final selected compact model(s)

EUP: Enable Unstructured Pruning

TQ: Thresholding weight connections, Quantization

DT: Training dataset

DV: Validation dataset

GRS: Greedy inter-layer order with Random Selection of intra-layer units

• 𝑉𝑎𝑙𝐴𝑐𝑐: validation
accuracy

• 𝑂𝑟𝑖𝑉𝑎𝑙𝐴𝑐𝑐: validation
accuracy of the initial
structure

• 𝒯: tolerance of accuracy
drop

Failed validation:
𝑉𝑎𝑙𝐴𝑐𝑐 < 𝒯 × 𝑂𝑟𝑖𝑉𝑎𝑙𝐴𝑐𝑐

© 2023 University of Maryland 12

GRS Method (2)

[Wu 2022] X. Wu, D.-T. Lin, R. Chen, and S. Bhattacharyya. Learning compact DNN models for behavior
prediction from calcium imaging of neural activity. Journal of Signal Processing Systems, 94:455-472, 2022.

Two state-of-the-art unstructured pruning methods [Han 2015]:

• 𝑇ℎ𝑟𝑒𝑠ℎ𝐼𝑛𝑖𝑡 = 0.3
• 𝑇ℎ𝑟𝑒𝑠ℎ𝑆𝑡𝑒𝑝 = 0.1

• Iteratively increase the threshold until accuracy
falls below 𝒯 × 𝑂𝑟𝑖𝑉𝑎𝑙𝐴𝑐𝑐

T:

T: Cut weight connections having relatively low

magnitudes.

Q: weight

quantization.

Q:

• Iteratively decrease the number of digits until
accuracy falls below 𝒯 × 𝑂𝑟𝑖𝑉𝑎𝑙𝐴𝑐𝑐

© 2023 University of Maryland 13

GRS Method (3)

(Python)

In: input loader
B: Bias loader
W: Weights loader

Read in float type data

© 2023 University of Maryland 14

GRS Method (4)

Initial models in different types and structures:

© 2023 University of Maryland 15

Neural Network Models for Evaluation

Experiment design:

• Investigate whether intermediate sub-structures impact the overall pruning result.
• Compare GRS with RRS.

• RRS = Random inter-layer order and Random Selection of intra-layer units.
• 𝒯 = 0.985
• Report average of 4 different models on 9 MSN (Medium Spiny Neuron) datasets with 10 repeated trials each.

Results:

• AL: Test Accuracy Loss, FCI: FLOP Count Improvement, PCI: Parameter Count Improvement.
• Compare GRS with RRS. Metrics: GRS gives X percent more than RRS.

© 2023 University of Maryland 16

NeuroGRS Experiments (1)

Experiment design:

• Investigate whether state-of-the-art structured pruning methods for large neural networks are effective in our context.
• Compare GRS with NWM.

• NWM = Natural inter-layer order and Weight Magnitude based selection of intra-layer unit to prune.
• NWM is representative of other pruning methods that do not consider model structure [Han 2015, Luo 2017].

• 𝒯 = 0.985

• Report average of 4 different models on 9 MSN (Medium Spiny Neuron) datasets with 10 repeated trials each.

Results:

• AL: Test Accuracy Loss, FCI: FLOP Count Improvement, PCI: Parameter Count Improvement.
• Compare GRS with NWM. Metrics: GRS gives X percent more than NWM.

© 2023 University of Maryland 17

NeuroGRS Experiments (2)

Experiment design:

• On 9 MSN (Medium Spiny Neuron)
datasets of 3000 frames each.

• 4 different shallow DNN models.

• 10 repeated trials.

• 𝒯 of GRS, Pruning Stage T, and

Stage Q are set to 0.985, 0.995,
and 0.990, respectively.

Results:

• Structured pruning using GRS:

• Further unstructured pruning with TQ:

© 2023 University of Maryland 18

NeuroGRS Experiments (3)

Experiment design:

• With 4 different types of DNN models: use NGSynth to implement their optimized and
original forms using LIDE-C, and deploy on a Raspberry Pi Zero W V1.1 platform.

• LIDE-C = Lightweight Dataflow Environment integrated with the C programming language
[Lin 2017].

• How much runtime improvement is observed from the compact models compared to their
corresponding overparameterized models?

Results:

© 2023 University of Maryland 19

NeuroGRS Experiments (4)

Overview:

• Identify the far phase and the near phase of the GRS pruning process.

• Structures impact model performance less in the far phase compared to
the near phase.

• This type of phase-based reasoning can be adapted to other pruning
methods.

• Develop a "jump mechanism" to help GRS step into the near phase much
faster  Much less time (and less carbon footprint) required for pruning.

© 2023 University of Maryland 20

Jump-GRS Extension

• We have given an overview of pruning and other classes of methods for
compressing DNN models.

• We have introduced a new pruning method called Greedy inter-layer
order with Random Selection of intra-layer units (GRS).

• We have combined GRS with methods for unstructured pruning to
provide a more comprehensive pruning solution.

• We have introduced a software tool, called NeuroGRS, that allows system
designers apply the GRS method with a high degree of automation.

• We have introduced concepts of near- and far-phase operation, which
are applied in NeuroGRS to greatly improve pruning speed.

Conclusion

21© 2023 University of Maryland

22

Backup Slides

© 2023 University of Maryland

• Use RRS (Random inter-layer
order, random intra-layer selection
of units).

• Retrain and validate all possible
intermediate structures 3 times.

• Set 𝒯 = 0.5 to allow pruning to
continue.

• Use an MLP model called
“mlpmulti” with a hidden structure
of 16X16X16.

• Plot the average validation
accuracy of all possible structures
with repeats at each pruning step.

Demonstrating the pruning phases

© 2023 University of Maryland 24

Jump-GRS Introduction

JGRS algorithm:
• Multiple attempts are used to exploit

randomization in the algorithm. The
best result across all attempts is taken.

• The last valid structure, after all
attempts, will be used as the initial
structure for the next phase.

• Each attempt can be regarded as an
examination of different cut-off artificial
node sets.

• The three phases of GRS have different
compression rates.

• JGRS reduces the compression rate as it
goes from one subphase/phase to the
next.

• A structure fails if its validation acc.
becomes lower than 𝒯 × 𝑂𝑟𝑖𝑉𝑎𝑙𝐴𝑐𝑐.

© 2023 University of Maryland 25

Jump-GRS Method

Initial DNN models used in NeuroGRS: Scaled DNN models:

© 2023 University of Maryland 26

Evaluation of Jump-GRS Method

JGRS and GRS Comparison

• 18 datasets (MSN) of 3000 frames.

• Report the average of 10 repeated trials
• on all MSN datasets.

JGRS vs GRS results:

• 𝒯 for both GRS and JGRS is 0.985

• Attempts:
• Far subphase 1 = 3
• Far subphase 2 = 3
• GRS = 3

© 2023 University of Maryland 27

Jump-GRS Experiments (1)

JGRS on larger DNNs

• 18 MSN Datasets of 3000
frames.

• WGEVIA-REAL: 1600
balanced labeled
embeddings for two
classes of microcircuits.

• 𝒯 = 0.985

• Pruning time is reported
in seconds using a Core

i7-2600K CPU with a

GeForce GTX 1080

GPU.

JGRS on MSN dataset

JGRS on WGEVIA-REAL dataset

GRS on MSN dataset

© 2023 University of Maryland 28

Jump-GRS Experiments (2)

GRS, JGRS runtime trend:

• WGEVIA-REAL dataset

• MLP models with different
numbers of nodes in each
layer.

• 𝒯 = 0.985

• Plot average runtime
(seconds) of 10 repeated
trials.

E
x
e
cu

ti
o
n
 t

im
e
 (

se
co

n
d
s)

© 2023 University of Maryland 29

Jump-GRS Experiments (3)

• [Bhattacharyya 2019] Bhattacharyya, Shuvra S., et al. "Handbook of Signal Processing Systems." (2019).
• [Han 2015] Han, Song, et al. "Learning both weights and connections for efficient neural network." Advances in neural information

processing systems 28 (2015).
• [He 2017] He, Yihui, Xiangyu Zhang, and Jian Sun. "Channel pruning for accelerating very deep neural networks." Proceedings of the IEEE

international conference on computer vision. 2017.
• [Hu 2016] Hu, Hengyuan, et al. "Network trimming: A data-driven neuron pruning approach towards efficient deep architectures." arXiv

preprint arXiv:1607.03250 (2016).
• [Li 2019] Li, Chunyue, et al. "Prediction of forelimb reach results from motor cortex activities based on calcium imaging and deep learning."

Frontiers in cellular neuroscience 13 (2019): 88.
• [Li 2016] Li, Hao, et al. "Pruning filters for efficient convnets." arXiv preprint arXiv:1608.08710 (2016).
• [Lee 2017] Lee, Yaesop, et al. "Online learning in neural decoding using incremental linear discriminant analysis." 2017 IEEE International

conference on cyborg and bionic systems (CBS). IEEE, 2017.
• [Lin 2017] Lin, Shuoxin, et al. "The DSPCAD framework for modeling and synthesis of signal processing systems." Handbook of

hardware/software codesign. Springer, Dordrecht, 2017. 1185-1219.
• [Liu 2018] Liu, Zhuang, et al. "Rethinking the value of network pruning." arXiv preprint arXiv:1810.05270 (2018).
• [Frankle 2018] Frankle, Jonathan, and Michael Carbin. "The lottery ticket hypothesis: Finding sparse, trainable neural networks." arXiv

preprint arXiv:1803.03635 (2018).
• [Luo 2017] Luo, Jian-Hao, Jianxin Wu, and Weiyao Lin. "Thinet: A filter level pruning method for deep neural network compression."

Proceedings of the IEEE international conference on computer vision. 2017.
• [Molchanov 2016] Molchanov, Pavlo, et al. "Pruning convolutional neural networks for resource efficient inference." arXiv preprint

arXiv:1611.06440 (2016).

References (1)

30© 2023 University of Maryland

• [Suau 2018] Suau, Xavier, et al. "Principal filter analysis for guided network compression." arXiv preprint arXiv:1807.10585 2 (2018).
• [Wu 2022]X. Wu, D.-T. Lin, R. Chen, and S. Bhattacharyya. Learning compact DNN models for behavior prediction from calcium

imaging of neural activity. Journal of Signal Processing Systems, 94:455-472, 2022.
• [Yeom 2021] Yeom, Seul-Ki, et al. "Pruning by explaining: A novel criterion for deep neural network pruning." Pattern Recognition 115

(2021): 107899.

References (2)

31© 2023 University of Maryland

