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• Pruning:

• Remove neurons or parameters that provide little or no contribution to 

inference accuracy

• Distillation:

• Transfer knowledge from a large model to a small model

• Neural Architecture Search:

• Optimize the number, types and connectivity of network layers

Popular Methods to Compress DNN Models
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Pruning: Structured and Unstructured
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Multilayer
Perceptron: 
hidden layer 
example

• Implementation-
friendly

• Supports common 
ML libraries

• More general
• Needs specially-

designed
hardware/
software for sparse 
computation



Pruning: Structured and Unstructured
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CNN-layer 
filter 
example

• Implementation-
friendly

• Supports common 
ML libraries

• More general
• Needs specially-

designed
hardware/
software for sparse 
computation



• Deep Compression [Han 2015] 

• Uses weight threshold to prune. Leads to unstructured network architecture.

• Inference-time channel reduction without retraining [He 2017] 

• Applies a criterion based on Lasso Regression.

• ThiNet — weight-magnitude-based structured pruning [Luo 2017] 

• Layer-wise relevance propagation (LRP) [Yeom 2021] 

• Uses a novel criterion, layer-wise relevance propagation, to select weights for 

structured pruning.
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Previously-developed Pruning Methods
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NeuroGRS was designed to derive compact DNN models for neural decoding systems. 
It can also be applied to generate compact DNN models for other embedded vision applications.

Calcium 
imaging of 

brain

Motion 
correction

Neuron 
detection

Neural 
signal 

extraction
Neural 

decoding

In real-time: 10 Hz
Image source: 
https://www.nature.com/articles/npp2014206, 
https://www.youtube.com/watch?v=d5zK1RUJCiU&ab_c
hannel=MocomiKids.

NeuroGRS

Calcium-imaging-based 
neural decoding system: 
Overview
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Design of NeuroGRS

Prediction of mouse's behavior 
from analysis of neural signals.

E.g., whether or how fast 
the mouse is going to move.

https://www.nature.com/articles/npp2014206


• GRS stands for Greedy inter-layer order with Random Selection of intra-layer 
units.

• Combines pruning and architecture search with an emphasis on structured 
pruning.

• Takes into consideration both the model architecture and trained weights.

• Suitable for further compressing small DNN models for optimized embedded 
implementation.

• Accompanied by a dataflow-based inference system for efficient inference.

Overview of NeuroGRS
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• Structures determine performance for shallow DNNs; learned weights can be 
retrained from scratch [Liu 2018] [Frankle 2018].

• This finding is especially relevant for embedded vision, where shallow DNNs 
may be preferable due to resource constraints.

• Using a large compression rate (number of removed neurons or connections) 
without retraining can significantly degrade inference accuracy [Li 2016] [Hu 
2016].
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Foundational Findings Applied in NeuroGRS



• Specify initial CNN structure in Keras Tensorflow format.

• If pretrained, load pretrained weights. GRS can either train first and 
then prune or perform direct-prune from pretrained model.

• Provide training, validation, and testing data sets.

• Configure hyperparameters.

• Run NeuroGRS to execute the pruning process.

• Output  compact model implemented in Python/C/C++, suitable for 

inference on embedded platforms

How to Use the NeuroGRS Software Package
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Using NeuroGRS (Continued)

10© 2023 University of Maryland



Dataflow graph for NeuroGRS:
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GRS Method (1)

Mi: an overparameterized DNN model candidate

P(Mi): a pruned DNN model candidate

vi: a selection criterion

k: the final selected compact model(s)

EUP: Enable Unstructured Pruning

TQ: Thresholding weight connections, Quantization

DT: Training dataset

DV: Validation dataset



GRS: Greedy inter-layer order with Random Selection of intra-layer units

• 𝑉𝑎𝑙𝐴𝑐𝑐: validation 
accuracy

• 𝑂𝑟𝑖𝑉𝑎𝑙𝐴𝑐𝑐: validation 
accuracy of the initial 
structure

• 𝒯: tolerance of accuracy 
drop

Failed validation:
𝑉𝑎𝑙𝐴𝑐𝑐 < 𝒯 × 𝑂𝑟𝑖𝑉𝑎𝑙𝐴𝑐𝑐
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GRS Method (2)

[Wu 2022] X. Wu, D.-T. Lin, R. Chen, and S. Bhattacharyya. Learning compact DNN models for behavior 
prediction from calcium imaging of neural activity. Journal of Signal Processing Systems, 94:455-472, 2022.



Two state-of-the-art unstructured pruning methods [Han 2015]: 

• 𝑇ℎ𝑟𝑒𝑠ℎ𝐼𝑛𝑖𝑡 = 0.3
• 𝑇ℎ𝑟𝑒𝑠ℎ𝑆𝑡𝑒𝑝 = 0.1

• Iteratively increase the threshold until accuracy 
falls below 𝒯 × 𝑂𝑟𝑖𝑉𝑎𝑙𝐴𝑐𝑐

T:

T: Cut weight connections having relatively low 

magnitudes.

Q: weight 

quantization.

Q:

• Iteratively decrease the number of digits until 
accuracy falls below 𝒯 × 𝑂𝑟𝑖𝑉𝑎𝑙𝐴𝑐𝑐
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GRS Method (3)



(Python)

In: input loader
B: Bias loader
W: Weights loader

Read in float type data
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GRS Method (4)



Initial models in different types and structures:
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Neural Network Models for Evaluation



Experiment design:

• Investigate whether intermediate sub-structures impact the overall pruning result.
• Compare GRS with RRS. 

• RRS = Random inter-layer order and Random Selection of intra-layer units.
• 𝒯 = 0.985 
• Report average of 4 different models on 9 MSN (Medium Spiny Neuron) datasets with 10 repeated trials each.

Results:

• AL: Test Accuracy Loss, FCI: FLOP Count Improvement, PCI: Parameter Count Improvement.
• Compare GRS with RRS. Metrics: GRS gives X percent more than RRS.
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NeuroGRS Experiments (1)



Experiment design:

• Investigate whether state-of-the-art structured pruning methods for large neural networks are effective in our context. 
• Compare GRS with NWM. 

• NWM = Natural inter-layer order and Weight Magnitude based selection of intra-layer unit to prune.
• NWM is representative of other pruning methods that do not consider model structure [Han 2015, Luo 2017].

• 𝒯 = 0.985 

• Report average of 4 different models on 9 MSN (Medium Spiny Neuron) datasets with 10 repeated trials each.

Results:

• AL: Test Accuracy Loss, FCI: FLOP Count Improvement, PCI: Parameter Count Improvement.
• Compare GRS with NWM. Metrics: GRS gives X percent more than NWM.
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NeuroGRS Experiments (2)



Experiment design:

• On 9 MSN (Medium Spiny Neuron) 
datasets of 3000 frames each.

• 4 different shallow DNN models.

• 10 repeated trials.

• 𝒯 of GRS, Pruning Stage T, and 

Stage Q are set to 0.985, 0.995, 
and 0.990, respectively.

Results:

• Structured pruning using GRS:

• Further unstructured pruning with TQ:
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NeuroGRS Experiments (3)



Experiment design:

• With 4 different types of DNN models: use NGSynth to implement their optimized and 
original forms using LIDE-C, and deploy on a Raspberry Pi Zero W V1.1 platform.

• LIDE-C = Lightweight Dataflow Environment integrated with the C programming language 
[Lin 2017].

• How much runtime improvement is observed from the compact models compared to their 
corresponding overparameterized models?

Results:
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NeuroGRS Experiments (4)



Overview:

• Identify the far phase and the near phase of the GRS pruning process. 

• Structures impact model performance less in the far phase compared to 
the near phase.

• This type of phase-based reasoning can be adapted to other pruning 
methods.

• Develop a "jump mechanism" to help GRS step into the near phase much 
faster  Much less time (and less carbon footprint) required for pruning.
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Jump-GRS Extension



• We have given an overview of pruning and other classes of methods for 
compressing DNN models.

• We have introduced a new pruning method called Greedy inter-layer 
order with Random Selection of intra-layer units (GRS).

• We have combined GRS with methods for unstructured pruning to 
provide a more comprehensive pruning solution.

• We have introduced a software tool, called NeuroGRS, that allows system 
designers apply the GRS method with a high degree of automation.

• We have introduced concepts of near- and far-phase operation, which 
are applied in NeuroGRS to greatly improve pruning speed.

Conclusion
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Backup Slides
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• Use RRS (Random inter-layer 
order, random intra-layer selection 
of units). 

• Retrain and validate all possible 
intermediate structures 3 times.

• Set 𝒯 = 0.5 to allow pruning to 
continue.

• Use an MLP model called 
“mlpmulti” with a hidden structure 
of 16X16X16.

• Plot the average validation 
accuracy of all possible structures 
with repeats at each pruning step.

Demonstrating the pruning phases
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Jump-GRS Introduction



JGRS algorithm:
• Multiple attempts are used to exploit 

randomization in the algorithm. The 
best result across all attempts is taken.

• The last valid structure, after all 
attempts, will be used as the initial 
structure for the next phase.

• Each attempt can be regarded as an 
examination of different cut-off artificial 
node sets.

• The three phases of GRS have different  
compression rates. 

• JGRS reduces the compression rate as it 
goes from one subphase/phase to the 
next.

• A structure fails if its validation acc. 
becomes lower than 𝒯 × 𝑂𝑟𝑖𝑉𝑎𝑙𝐴𝑐𝑐.
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Jump-GRS Method



Initial DNN models used in NeuroGRS: Scaled DNN models:
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Evaluation of Jump-GRS Method



JGRS and GRS Comparison

• 18 datasets (MSN) of 3000 frames.

• Report the average of 10 repeated trials 
• on all MSN datasets. 

JGRS vs GRS results:

• 𝒯 for both GRS and JGRS is 0.985

• Attempts:
• Far subphase 1 = 3
• Far subphase 2 = 3
• GRS = 3

© 2023 University of Maryland 27

Jump-GRS Experiments (1)



JGRS on larger DNNs

• 18 MSN Datasets of 3000 
frames.

• WGEVIA-REAL: 1600 
balanced labeled 
embeddings for two 
classes of microcircuits.

• 𝒯 = 0.985

• Pruning time is reported 
in seconds using a Core

i7-2600K CPU with a 

GeForce GTX 1080 

GPU.

JGRS on MSN dataset

JGRS on WGEVIA-REAL  dataset

GRS on MSN dataset
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Jump-GRS Experiments (2)



GRS, JGRS runtime trend:

• WGEVIA-REAL dataset

• MLP models with different 
numbers of nodes in each 
layer.

• 𝒯 = 0.985

• Plot average runtime 
(seconds) of 10 repeated 
trials.
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Jump-GRS Experiments (3)
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