
A Cutting-Edge Memory 
Optimization Method for 
Embedded AI Accelerators

Arnaud Collard

Technical leader – Embedded AI

7 Sensing Software



2© 2024 7 Sensing Software

Introduction to 7 Sensing Software



Our mission: develop AI based solutions for sensors

3© 2024 7 Sensing Software

We develop sensing algorithms using machine learning

We possess comprehensive expertise spanning the entire development cycle, from cameras and 
sensors to deployment at the edge

Camera & Sensors

Utilize deep expertise 
across a diverse array of 

sensors, including 
sensor modelling

Data Generation

Apply advanced 
methods to acquire 

large datasets, including 
the generation of 
synthetic human 

datasets

AI Solutions

Create advanced neural 
network architectures 
to implement sensor 
fusion, multitasking…

Edge Deployment

Utilize both off-the-shelf 
and internal tools for 
deploying AI solutions 
on embedded systems



7 Sensing Software: application areas

4© 2024 7 Sensing Software

• Eye-Tracking
• Depth Map Densification
• Spatial Light Source Estimation

AR/VR 3D

• Respiratory Rate (at rest and with motion)
• Blood Pressure (PPG, ECG)

Vital Signs 1D

Sensor Data:
from time series up to RGB + 

depth (3D)

• ALS AWB
• AI-Accelerated Image Sensor

Imaging 2D

• Gesture Recognition (dToF, PPG)
• Human Presence and Head Pose
• Optical Force Sensing

Human-Machine 
Interaction

1.5D



5© 2024 7 Sensing Software

Creating smart sensors



• There is value in integrating AI processing directly inside the sensor:

• Avoiding the transfer of sensor data makes system design easier while enabling the reduction of 
overall power consumption

• However, such AI accelerator brings additional silicon area and therefore additional cost:

• Optimizing for area, especially by reducing its memory footprint is of key interest

• We developed advanced AI methods to optimize AI processor integration in the case of an image 
sensor

Benefits and challenges of smart sensors

6© 2024 7 Sensing Software



7© 2024 7 Sensing Software

Introduction to optimization method



• Two main objectives to address simultaneously

• Reduce memory used by NPU to reduce cost and silicon area

• Reduce latency between start of image acquisition and end of AI processing, and better load balancing of 
the AI accelerator (also called Neural Processing Unit (NPU))

• Our approach: Innovative optimization method allowing on-the-fly image acquisition and AI inference

• Could be applied to a broader scope than sensor AI and image processing

Objectives and approach

8© 2024 7 Sensing Software

Host MCU NPU
Image sensor



• Designed to optimize AI on-chip memory (OCM) footprint and control the latency 
penalty (extra time to execute network on the AI accelerator)

• Relies on two well-known network optimization methods:

• Processing by stripes

• Processing by channels

• Implemented by a tool designed to explore network optimization parameters and find 
the best trade-off between memory footprint and latency

• Stripes used at start of network, channels towards the end (last CNN layers)

• A patent application has been filed

Main highlights of the method

9© 2024 7 Sensing Software

Complementary: both can be applied to the same model



• Neural networks

• Focused on convolutional neural network 
applied to images

• Could be extended to other network 
architectures and domains

• Embedded Neural Processing unit (AI accelerator)

• Targets tiny embedded architectures with AI 
accelerator controlled by a general processing 
unit that schedules model inference

• Both cores have their own memory

• Priority is to optimize NPU on-chip memory 
(OCM)

Targeted neural networks and architecture

10© 2024 7 Sensing Software



• General principle: the method splits an original network into multiple smaller networks 
with metadata to execute split models

• Solution is NPU-agnostic

Process flow to split model and deploy on NPU

11© 2024 7 Sensing Software



• Objective: reduces on-chip memory cost for input and output feature maps processed by CNN layers

• Number of stripes can decrease when moving forward in the network as feature map sizes decrease

• Processes each stripe separately, can be processed by a varying number of cascaded layers

• Various stripe configurations according to position in the network

• Allows on-the-fly processing as network input can be acquired stripe per stripe

Processing by stripes

12© 2024 7 Sensing Software



• Objective: reduces on-chip memory cost for weights of convolutional layers

• Cost for weights tends to increase when moving forward in the network

• Applied only if processing by stripe is inactive at the end of network

• Divides a given convolutional layer by output channels

• Several output channels may be grouped together for more efficiency

Processing by channels

13© 2024 7 Sensing Software



14© 2024 7 Sensing Software

Addressing the challenges



• Applying convolutional kernel to feature map implies need for co-located data (overlap)

• Cascading convolutional layers implies cascading overlaps

• increases drastically size of overlap for early layers and so latency

• Hard to determine size of overlap according to convolution parameters (stride, dilation, kernel size, padding) for 
all layers within a group

• Solution: implements 4-steps algorithm that resolves overlap configurations, remove junk data between split 
networks

Overlaps

15© 2024 7 Sensing Software



• Problem: no co-located data available at 
the edge of the feature map

• Breaks inference scheduling 
compared to normal stripe processing

• Adding zero padding does not 
produce accurate results

• Solution: stick the overlap at the edge of 
the feature map (top or bottom) and 
rework stripe re-composition 
accordingly (eliminate duplicated data)

Borders

16© 2024 7 Sensing Software



• Huge number of configurations for processing by stripes and processing by channels

• Solution: automatic algorithm for brute-force discovery on all stripes and channels configurations

• Number of stripes only decreased when going through the network

• Extending from stripes to tiles would be overkill (too complex and brings no value)

• Coupling processing by stripes and processing by channel also overkill -> processing by channel 
only applied when stripe splitting not applied (end of network)

• Impacts on latency

• Increase of MACs due to overlaps

• Increase of memory transfers between CPU and NPU due to network splitting (by stripes and by 
channels)

• Solution: simulates timing on NPU in the tool according to MACs and memory transfers, and takes 
maximum latency as an input parameter of the tool

Other challenges

17© 2024 7 Sensing Software



18© 2024 7 Sensing Software

Results



• Basic face detector using MobileNet v1 without bounding box

• Best compromise

• Memory footprint reduced by a factor of 3 with reasonable impact on latency

• Validated on simulated hardware

Original model Optimized model Gain

OCM (bytes) 301,200 104,512 -65.3%

System memory (bytes) 361,120 333,984 -7.5%

MACs 40,777,008 52,390,016 +28.5%
overhead

Number of cycles 1,109,642 1,463,823 +31.9%
overhead

Face detection use case

19© 2024 7 Sensing Software



• Various configurations applied to the 
face detector model to explore the 
balance between OCM and 
latency (1 for original model up to 3 
times slower):

• Huge reduction in OCM for an 
increase in latency up to 1.3x

• Little additional gain in OCM for an 
increase of latency from 1.3x to 3x

• Stable use of system memory

Face detection use case – optimization exploration

20© 2024 7 Sensing Software



• Generalizes well on other network 
architectures

• Good gains found for all models

• OCM reduction factor is dependent 
on network architecture and could 
be limited by:

• Use of global operator (ex: global 
average pooling)

• Number of skip connections

Model Gain on OCM Increase of cycles

Face 
segmentation

-37.5% +2%

Face 
classification

-38.1% +1.8%

Human detection -62.2% +11.8%

Face detection -80.9% +47.3%

Other use cases

21© 2024 7 Sensing Software



22© 2024 7 Sensing Software

Wrap up



• Significant decrease of on-chip memory footprint with reasonable impact on latency

• Automatic discovery of optimal configuration for various model architectures

• Proven with 5 different use cases

• Combining processing by stripes and processing by channels is a key point to significantly 
reduce OCM footprint

• NPU agnostic

• Internal tool, can be made available to customers in the context of a services project

Conclusions

23© 2024 7 Sensing Software

Applying this method allows the integration of AI-processing 
capability in sensors at optimal cost



Additional resources

ams OSRAM
https://ams-osram.com

7 Sensing Software

https://7sensingsoftware.com/

My contact info

arnaud.collard@7sensingsoftware.com

https://www.linkedin.com/in/arnaudcollard/

2024 Embedded Vision Summit

Please meet us at booth 708 to 

learn how our expertise in 

sensors, synthetic data, AI 

algorithms and edge deployment 

can help you realize your product 

ambitions

24© 2024 7 Sensing Software

https://ams-osram.com/
https://7sensingsoftware.com/
mailto:arnaud.collard@7sensingsoftware.com
https://www.linkedin.com/in/arnaudcollard/


25© 2024 7 Sensing Software

THANK YOU!!


