
Deploying Large Language 
Models on a Raspberry Pi

Pete Warden

CEO

Useful Sensors

© 2024 Useful Sensors 1



• github.com/ee292d/labs/blob/m

ain/lab1/run_llm.py

• 60 lines of Python code, including 
comments.

Running an LLM on a Raspberry Pi

2© 2024 Useful Sensors

http://github.com/ee292d/labs/blob/main/lab1/run_llm.py


3© 2024 Useful Sensors

Demo



• What’s the technology behind this code?

• Where can you get models?

• Which models will run efficiently on what hardware?

• How can you customize models?

• What’s coming in the future?

What you need to know

4© 2024 Useful Sensors



• Llama.cpp was one of the first easy to deploy 
implementations of Meta’s open weights Llama v1 LLM.

• It didn’t require Python or a lot of dependencies, unlike the 
Python code originally released by Meta, and so it became 
popular.

• It was also easy to optimize, and so became faster on many 
platforms.

• Support started to be added for other models, and a GGML 
format emerged that allowed export and import.

What’s the technology here? 

5© 2024 Useful Sensors

🔥💯

🙋♀️



• No! Though Llama.cpp’s scope has expanded over time, it’s still limited in which models 
it can support, and is focused on inference rather than training.

• The first generation of ML frameworks tried to be good at everything (TensorFlow more 
than most) which makes them hard to port, optimize, modify, and understand.

• We’re seeing different design goals in this generation. PyTorch is the favorite for 
prototyping and training, but other tools are used for inference, compression, and fine-
tuning.

So it’s like PyTorch or TensorFlow?

6© 2024 Useful Sensors



• Another library I use a lot is CTransformers2. This is similar to GGML, but has more of a 
focus on quantization and optimization.

• Don’t expect to bring your own model though. A key difference between gen 1 
frameworks and these is that they only support a subset of models, and adding new 
architectures may involve code changes.

• They also often break compatibility with saved files, requiring reconversion when you 
upgrade to a new library version.

Other frameworks

7© 2024 Useful Sensors



Where can you get models?

8© 2024 Useful Sensors

You can find almost any 
released model in any format 
somewhere on the site, look in 
the files section.

On Reddit, r/LocalLlama is the 
place to find news and advice 
on running models, along with 
some impressive demos.

• Be aware, most models are “open weights”, but few are “open source”. You can use 
the pretrained models, but the datasets and training code are usually kept 
proprietary. The Allen Institute’s Olma project is a welcome exception.

https://www.reddit.com/r/LocalLLaMA/
https://allenai.org/olmo


• You need a lot of RAM for LLMs, because transformers use dynamic layers constructed in 
memory. A good rule of thumb is that you need as much RAM as the model file size. For 
example a 7-billion parameter model at eight bits will be 7GB on disk, and you can 
expect to need at least 7GB of RAM to run it at a decent speed.

• The latency is also usually dominated by the RAM speed, so the faster the better.

• TPUs and other accelerators often don’t help much, since we’re memory bound.

Which models run on what HW?

9© 2024 Useful Sensors

= Model 
file size

Rule of 
thumb



• Running as a regular Android or iOS app is hard because you need to use a lot more 
memory and compute than most applications, and you’ll get throttled or blocked.

• If you have vendor-level access to avoid these limits, Android on a modern SoC is a good 
option.

• Otherwise a Raspberry Pi 5 is a good option, with 8GB of RAM it can handle medium-
sized models. Other quad-core A76 SBCs are similar.

• Microcontrollers and DSPs (meaning low power or low cost) aren’t possible right now 
because of how RAM-hungry these models are.

What hardware should you use?

10© 2024 Useful Sensors



• Since all mainstream LLMs are Transformer-based, and Transformer models are memory 
bound on batch-size-one inference, the size of the data you pull from memory matters.

• Quantization is an old technique that has become more relevant with models now 
memory bound. It takes 32-bit floating point representations of weights and shrinks 
them down to values that take fewer bits per value. Eight bit is standard for 
convolutional image models, but since bandwidth is so critical and unpacking compute 
can be hidden in memory latency, four, two, or even one bit schemes are now in use.

Quantization

11© 2024 Useful Sensors



• Low Rank Adaptation (or LoRA) is a technique that’s similar in effect to transfer learning 
in CNN models. It lets you add extra layers to a pretrained model to customize its 
outputs, with shorter training times and less data than a full training run.

• Here’s an example you can run in a Colab notebook in under an hour:

• http://github.com/ee292d/labs/blob/main/lab6/notebook.ipynb

How can you customize models?

12© 2024 Useful Sensors

http://github.com/ee292d/labs/blob/main/lab6/notebook.ipynb


13© 2024 Useful Sensors

LoRA Training Demo



• The idea is to use conventional search techniques to retrieve factual information to 
insert in the prompt as context, so the user question will draw on that knowledge.

• For example, you could notice a question contains the name of a product, and insert the 
product description as the context. The result should then be able to use that extra 
information to give a better answer.

• I hate it!

Retrieval Augmented Generation

14© 2024 Useful Sensors



• It’s a neat technique, but it’s usually overkill for most practical situations. The 
“generation” part means you’re still going to have some situations where the model 
makes up answers. 

• In most cases you can just do a good job on the “retrieval” and show those answers 
directly to the user. They’re vetted, relevant, and easy to control. RAG is for when you 
need to scale a solution, which isn’t relevant for most applications I encounter.

Why I hate RAG

15© 2024 Useful Sensors



• Models keep getting smaller and more accurate. Microsoft’s latest Phi 3 is a great 
example of the trend.

• Transformers are memory hungry and hard to accelerate. There are lots of alternatives 
like Mamba and Conformers that offer different tradeoffs, maybe something new will 
emerge that’s better for the edge.

• Shrinking scope will help us use even smaller models too, especially as I expect retrieval 
will be more important than generation long term.

What’s coming next?

16© 2024 Useful Sensors

https://news.microsoft.com/source/features/ai/the-phi-3-small-language-models-with-big-potential/
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2005.08100


• LLMs want to be on the edge!

• Dip your toes in the water with some simple code experiments, and prototype solutions 
that make sense to you.

• These models are only going to get faster and more capable, and hardware will emerge 
to help with that.

Conclusions

17© 2024 Useful Sensors



• These slides: usfl.ink/ev_talk

• EE292D Labs: github.com/ee292d

• Intro to GGML: omkar.xyz/intro-ggml

• Huggingface: huggingface.co

Resources

18© 2024 Useful Sensors

https://usfl.ink/ev_talk
http://github.com/ee292d/labs/blob/main/lab1/run_llm.py
https://omkar.xyz/intro-ggml/
http://huggingface.co/


• We run the latest AI models on edge hardware to solve problems like person detection, 
language translation, voice interfaces, LLM querying, and more!

• Come see us at our booth (#806)

Useful Sensors

19© 2024 Useful Sensors



20© 2024 Useful Sensors

Thank you


