

Multiple Object Tracking Systems

Javier Berneche Senior Machine Learning Engineer Tryolabs

⊗tryo.labs

- 1. Introduction to Multiple Object Tracking (MOT)
- 2. Building blocks
- 3. Challenges
- 4. Evaluation and promising research

Definition

Multiple Object Tracking (MOT) is the problem of identifying **multiple objects** in a video or live feed and representing them as a set of **trajectories**

Video: MOT Challenge

Applications

Autonomous navigation systems

Analyze and monitor congestion

Augmented reality

& tryo · labs

Applications

Surveillance

Crowd analysis

Sports analytics

Challenges

Changes in appearance

Occlusions

Crowded scenes

tryo labs

Building Blocks

Building Blocks: Initialization

Building Blocks: Initialization

Building Blocks: Initialization

Building Blocks: Detector

& tryo · labs

Building Blocks: Processing

& tryo · labs

Building Blocks: Processing

Building Blocks: Processing

Frames

Detection

& tryo ⋅ labs

Centroids

& tryo ⋅ labs

Assignment

Positional Cues: Kalman Filter

Positional Cues: Assignment

Greedy

- Simpler
- Faster

Hungarian

- Minimizes global distance
- Slower

& tryo · labs

Visual Cues

Visual Cues: Vectors

Visual Cues: History

Decide how to represent an object's embedding considering all **past embeddings**

Rolling averages

0

Clustering to maintain different versions of the object

Memory usage and computational **cost** of comparison

A complete tracking system

Challenges

Challenges: Detection Quality

False positives

False negatives

Challenges: Movement

Erratic movement of the objects

Camera movement

Challenges: Occlusions

Causes more false negatives

Positional tracking can fall apart

Embeddings of partially occluded objects can be bad

& tryo ⋅ labs

Challenges: Embeddings

Object detectors usually do not yield good **embeddings**

Need to add a **second model** for embeddings

Partial occlusions

No obvious model to start with

Evaluation & Research

Promising Research

A single model for detections and embeddings

One-stage models

>tryo-labs

MOT-Challenge Benchmark

Evaluation Metrics

High Order Tracking Accuracy (HOTA)

& tryo ⋅ labs

Conclusions

MOT has a huge variety of **applications**

The problem is **challenging**

Solutions involve a number of **components**

Lots of promising research

& tryo ⋅ labs

Resources

- MOTChallenge
- Luo et al. 2021 Literature review
- Laura Leal-Taixe
- Object detection
- Hungarian method
- Greedy matching
- Embeddings
- Kalman filter

Open-Source Tools

Trackers

- <u>ByteTrack</u>
- <u>Norfair</u>
- <u>SORT</u>
- DeepSORT

Tools

- MOTMetrics
- <u>YOLO</u>
- OpenMMLab

Trackers

- <u>SORT</u>
- <u>DeepSORT</u>
- BoT-SORT
- <u>ByteTrack</u>
- <u>SMILEtrack</u>
- <u>SUSHI</u>

Thank You!