

Edge AI Optimization on Rails—Literally

Matthew Pietrzykowski Principal Data Scientist Wabtec Corporation

Who We Are & What We Do

Introduction

ADVANCED TECHNOLOGY LABS

OUR MISSION

De-risk innovation investments and deliver **breakthrough** *solutions that scale for our customers.*

The Advanced Technology Team

PRODUCT FOCUSED INNOVATION Disrupting today, transforming tomorrow

3+

YEAR PRODUCT OUTLOOK

ROBOTICS ENGRS, DATA SCIENTISTS. ML ENGINEERS, SW DEV, UX STRATEGIC

PARTNERSHIPS

Advanced Technology Labs: Wabtec Innovation

REAL-TIME ASSET & CARLOAD INVENTORY TRACKING SYSTEM

AI WITH EXISTING CAMERA HW FOR DERAILMENT & ENVIRONMENTAL RISK

PASSENGER DETECTION & DETECTION MAPPING SYSTEMS

SPIKING VEHICLE ADVANCED SYSTEMS COLLABORATION WITH RESEARCH PARTNERS & ADJACENT INDUSTRIES © 2024 Wabtec

ADVANCED PERCEPTION SYSTEMS WITH MULTI-SENSOR FUSION FOR TRAIN AUTOMATION

Hybridized Edge Deployment

Approach to Edge Device Deployment

Metrics to Consider

- Latency
- Throughput
- Memory
- Power consumption
- Model size
- Accuracy
- Parallelism
- Pipelining
- Hardware
- Portability

Approaches for Optimal (or at least Target) Performance

- Model conversion to TensorRT
- Use a smaller model architecture
- Quantization
- GPU-specific libraries
- Model pruning
- Batch size optimization
- Input resolution
- Profiling and benchmarking

Example 1: Transit – Bus Doors

VaporBus – Vision Application

VaporBus is the principal door equipment supplier to the North American bus industry.

Current Product

- CLASS Contactless Acoustic Sensing System.
- Acoustic sensors to detect passengers in doorway.

Challenges

- Coverage of sensors limited.
- Dead zones in the coverage area to account for environmental changes E.g., Door handle reflects sound.
- Environment change.

VaporBus Vision Solution Advantages

- Better specificity
- Improved coverage area.
- Configurable detection/action zones
- Improved responsiveness.

VaporBus Vision Overview

VaporBus High Level Solution Diagram

Example: Object Detection

13

Example: Passenger Counting

Edge Compute

NVIDIA[®] Tegra[®] X1 series SoC

- NVIDIA Maxwell GPU
- ARM[®] quad-core Cortex[®]- A57 CPU Complex
- 4GB LPDDR4 memory

16GB eMMC 5.1 storage Gigabit Ethernet (10/100/1000 Mbps) PMIC, regulators, power and voltage monitors 260-pin keyed connector (exposes both high-speed and low-speed industry standard I/O)

On-chip temperature sensors

Jetson Orin for Next-Gen Robotics | NVIDIA

Constraining Issues

- Target cost
- Model size, Image size, core programs
- Competition for CPU
 - Vision tasks
 - Camera driver
 - Video feed
 - Pre & post processing
 - o Core tasks
 - > Web GUI
 - State Machine
 - Hardware
 - I/O
 - CAN msgs
 - Etc.

How to ingest & supply the incoming video stream as quickly as the system can handle it...

- ✓ Train -> ONNX -> TensorRT -> Docker
- ✓ Architecture Sizing
- ✓ Quantization
- ✓ GPU-Specific Libraries
- = 24 28 fps

Example 2: Freight Rail Audit

Freight Rail Audit: Need

Key Infrastructure Detection & Dead Reckoning (DR)

Utilize the existing onboard camera to identify key Positive Train Control (PTC) and wayside assets... as well as, using those assets for DR.

Track Inspection

Identify track and equipment irregularities that can cause a derailment

Environmental

Identify environmental factors around the track that pose a safety risk

Freight Rail Audit: Approach

- Most solutions found in the literature rely on expensive vision sensor ensembles making the value proposition questionable
- Initial attempts focused on calibrating the FOV to infer the AOV and finally to calculate the distance to the object. This led **to large** error propagation.
- The solution developed focuses on elegant hybridization of epipolar geometry, artificial intelligence, and classic CV methods.
- The algorithm uses a hybridized pipeline of of pre-trained, size appropriate algorithms & onboard locomotive hardware to keep the solution as simple as possible

Edge Compute – Onboard Optimization Approach

- Object Detection Model sizing
 Yolo V5 Nano
 - MobileNet V2

- Correspondence Point
 Detection
- SIFT
- BRISK @FAST - BRIEF

- Onboard Device
 Octink
 - Memory
 - 16GB of DDR4 RAM
 32GB of DDR4 RAM
 - CPU
 i7-6600U
 - **@**i7-1185FRE

- Detection Accuracy
 - Track Health
 - Vegetation
 - Asset
- Risk Probability
- Frame Rate

Recap

- Performance is dependent on system understanding
- Keep the target in mind when performance tuning
- Effective team collaboration with appropriate skill complementarity
- All contributors to the algorithm should be considered
- Performance targets are a function of: Functional specifications
 Solution Architecture
 Hardware
 Software
 - Cost

Resources

- <u>A Comparative Study of SIFT and its Variants</u>
- Brief: Binary robust independent elementary features
- BRISK: Binary Robust Invariant Scalable Keypoints
- Quick Start Guide :: NVIDIA Deep Learning TensorRT Documentation
- <u>Rail Insider-Locomotive technology 2020: What's next is now</u>
- <u>Rail Insider-On-board locomotive monitoring technology (parts 1 & 2)</u>
- Designing Machine Learning Systems

