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The era of large language models VISIN
SUMMIT"
Copywriting Co-pilots, digital
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eproration/SQL / support bots
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design
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Large language models

* Revolution started in machine translation

* Context-sensitive next token prediction via
attention

* Transformer blocks composed of layers of
attention and feed-forward blocks

* Encoder-decoder architectures

* Intelligence emerges through scale

@ BenChSCi © 2024 Istvan Fehervari

embedded

VISITN

SUMMIT

Input Text

|

Tokenize

v

Deep neural network

v

Decode tokens

|

Output text

4



embedded ‘
Why the attention mechanism is critical VISITN

SUMMIT

* Enables learnable weights of content pieces
for arbitrary context - better reasoning Puppies  Are  Cute High attention

e Works very well for ordered and unordered
sets

* Works well with external contexts, e.g., cross-
attention with vision

* All modern ML models leverage some form of
attention

Low attention
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Building blocks of LLMs

* LLMs are composed of decoder blocks
* Inputs are all previous tokens — including predicted ones

* Decoder outputs a token distribution based on all
previous tokens

* During generation we sample tokens from the output
distribution

* Temperature

* Top-k / top-n

@ BenChSCi © 2024 Istvan Fehervari

embedded

VISIN

SUMMIT

Fully connected

Decoder

\
f Add & normalize A

Fully connected
network

—’I-—’H

|

Add & normalize |«

I

6x

< Multi-head
attention

it

Add & normalize

Masked Multi-head
attention

Positional encoding |—»

Embeddings

_@

Tokenized text

I_>I

T Tokenizer

Target text



embedded
Training LLMs VISIN

SUMMIT

e Supervised training

* Input — output pairs (e.g., translation)

* Fine-tune on specific task
» Self-supervised training

* Next/masked token prediction — needs a large body of data
* Reinforcement learning human feedback (RLHF)

* For instruction tuning, use human ranking to learn a reward function
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Main foundational open LLMs VISIN

SUMMIT

* LLaMA (2023/2)-7B/13B/33B/65B

* Falcon (2023/5)- 7B / 40B / 180B

e LLaMA2 (2023/6)-7B/13B/70B

e Mistral (2023/9) - 7B (based on LLaMA?2)
* Vicuna / Alpaca (based on LLaMA)

* Phi-2(2023/12)-2.7B

* Mixtral (2023/12) - 8x7B
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Perception via Language
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Rise of a new dataset ‘"Sl"“

SUMMIT

* Annotated class labels are expensive = captions are abundant

* Era of natural language supervision

 WeblmageText dataset: 400 million images with text captions
* Created with web scraping

e Query words are composed of all words occurring at least 100 times
on Wikipedia

@ BenChSCi © 2024 Istvan Fehervari

10



embedded
CLIP: combining language and vision VISITN

SUMMIT®
* Predicting captions directly does not scale well
* Instead, predict how well a text description and an image “fit together”

* First example of prompt engineering in vision

(1) Contrastive pre-training (2) Create dataset classifier from label text
Pepper the Text ‘
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AL l l l l a . Encoder
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a
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Object detection with CLIP VISITN

SUMMIT

Contras{.weloss Localization loss
Object detection with Grounded DINO — §

1
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* Open-vocabulary detection
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e Text backbone is a pretrained transformer _—
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Image segmentation with CLIP VISION

SUMMIT

Segmentation with Grounded SAM
* Open-vocabulary segmentation

* Detect boxes with Grounded DINO = Predict mask with SAM

, score

‘ AEP— mask decoder —
image
encoder [ 1 T f

conv prompt encoder

image 1 1 T f

embedding Mask  points  box text

& & |, score

, score
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Image segmentation with CLIP

* CLIPSeg —Image segmentation with prompts

support

. text prompt
"A blue car."
or

visual

vy

CLIP Text
Transformer

L

vy

CLIP Visual
Transformer

_/

Luddecke et al. - Image Segmentation Using Text and Image Prompts, CVPR 2022
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Image generation with CLIP VISION

SUMMIT
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* Stable Diffusion uses CLIP text embeddings
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A 4

LLMs with Vision
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Learning paradigms for (V)LLMs VISITN

SUMMIT

 We want our models to reason over visual input

e What data is needed?

(A) Pretrain—finetune (BERT, T5)

7 )
|
Pretrained Finetune on Inference . .
taskA > ontaskA (C) Instruction tuning (FLAN)
.
* Typically requires many - Instruction-tune on
task-specific examples Pretrained . — Inference
¢ One specialized model mBang tSSKS' on task A
L for each task P

- ’j Model learns to perform Inference ol?
. many tasks via natural unseen tas
(B) Promptlng (G PT-3) L language instructions
a Improve performance N
via few-shot prompting
Pretrained or prompt engineering  |nference
LM » ontask A

.
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Training V-LLMs

Dataset building via

embedded :

VISIN

SUMMIT

1. Image captioning (ideally with bounding box ground truth)

2. Visual QA datasets

3. Synthetic: create (2) from (1)

Can be done manually or LLM-assisted

<BOS=> Below is an instruction that describes a task.

Write a response that appropriately completes the
request

### Instruction: <instruction>
##H Input: {<image>, <text>}
### Response: <output><EOS>

@ BenchSci
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Learning paradigms for (V)LLMs

e (Multi-modal) in-context learning (e.g., Otter)
* Inject demonstration set to context
* Requires large context

e Can be used to teach LLMs to use external tools

e (Multi-modal) chain-of-thought (e.g., ScienceQA) |

* Immediate reasoning steps for superior output
» Adaptive or pre-defined chain configuration

e Chain construction: infilling or predicting
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VISITN

SUMMIT

<BOS> Below are some examples and an instruction

that describes a task. Write a response that appropri-

ately completes the request
### Instruction: {instruction}
### Image: <image>

#i## Response: {response |
### Image: <image>

#i## Response: {response |

#i## Image: <image>
#i## Response: <EOS>

19




LLMs with vision capabilities

 Learnable interface between modalities

* Expert model translating (e.g., vision)
into text

* Special tokens/function calling to
access aux models

Query-based

Instruct BLIP,

VisionLLM,
Macaw-LLM
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Modality
bridging
Learnable
interface
Projection-
based Parameter-
LLaVa, efficient tuning
PanadaGPT, LaVIN

Video-ChatGPT

embedded

VISITN

SUMMIT

Expert model

VideoChat-
Text, LLaMA-
Adapter V2

20



embedded
Modality bridging with shallow alighment VISIN

SUMMIT

e Use CLIP to map vision and language tokens to the same latent space
(shallow alignhment) — LLaVa-1.5

 Keep LLM and image encoder frozen — only train a shallow projection layer

Language Response Xa Q Q Q

Language Model fﬂg,

OO OO0
Proiecti
rojection W Z. H, *Hq
Vision Encoder Xv Image Xq Language Instruction
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Deeper alignment: Mixture of experts with vision VISIN
SUMMIT®
* Visual Experts — Mixture of experts with vision, ) ( EIN )
e.g., CogVLM ,,“ .
* Experts are separate feedforward layers | (Mtihead Aention )
. i
* Only a few experts are activated during FQQWW F § ) %w I‘L )
inference i !_ h— ey
Ezj Image features i LayerNorm |
* Learn a gating network . (FoErayer N S %—I

G(x),
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embedded
LLM-aided visual reasoning VISI'N

SUMMIT

LLM function calling

. Instruction/question
e Controller —task planning /9

» Decision maker — summarize, continue or not l S
jec
* Semantic refiner — generate text wrt. context /

LLM
e Strong generalization (reasoning)
Segmentation
* Emergent ability (e.g., understand meme images) [ model }
* Better control l
Answer
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Vision-language on the Edge

© 2024 Istvan Fehervari
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Applications

* Programming — natural language
instructions

* Training free solutions
* Shorter time-to-market

» Short lead time to adapt to changing
environments
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USER

Al

USER

Al

silseded >

VISIN

SUMMIT

[ NS

This is my front door. Did | get a package?

Yes, you did.

How many boxes are there?

There are 4 boxes.
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Applications VISIN

SUMMIT

e Control: more natural, frictionless UX
 Voice or chat to control/monitor devices/networks
* Answer usability questions (no more manuals)
* Personalized onboarding to new devices

* Feedback:

e OQutput is interpreted without human-in-the-loop (e.g., alarm systems)
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embedded
Challenges VISIN

SUMMIT

LLMs need lot of resources (compute, memory)
* Visual input, CoT requires larger context

 Latency is still an issue on the edge

Output control of LLMs is still unsolved, prone to hallucinations

Al safety — bias is an unsolved issue

Al alignment is an upcoming field of research
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Conclusions VISIN

SUMMIT

* Language as control brought tremendous improvements

* LLMs can operate very well with visual signals

* Future products will be more user-friendly, more natural

* Faster time to market, better adaptability both tech and business
* Performance on the edge today is a challenge but will be solved

» Al safety / alignment is the new challenge without a clear answer in sight
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Resources VISIN

SUMMIT

 Yinetal.- A Survey on Multimodal Large Language Models

e Zhang et al. - Vision-Language Models for Vision Tasks: A Survey

* Yinetal.- A Survey on Multimodal Large Language Models

e Liuddecke et al. - Image Segmentation Using Text and Image Prompts

e Liuetal.-Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object
Detection

e Kirillov et al. - Segment Anything

e Wang et al. - CogVLM: Visual Expert for Pretrained Language Models

e Liuetal. -LLaVA: Large Language and Vision Assistant

e Lietal. - Otter: A Multi-Modal Model with In-Context Instruction Tuning
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