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* Minibatch gradient descent

* Minibatch sampling technique currently used, and its limitations
* Propose a new minibatch sampling technique

* Results

* Benefits

* Discussion

* Conclusions
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Introduction

* Minibatch gradient descent for classification
 Random sampling, currently used

* Randomly shuffle the training dataset

* Pick minibatches sequentially

* Desired outcome of shuffling

» Samples from a single class are not clustered together (LeCun et al.)
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ImageNet Train Dataset
1,281,167 samples

1

2

—>

32 samples

+— Minibatch #

* Any minibatch has even representation from all classes, not just a single class

e Actual outcome

 Classes are not evenly represented in minibatches
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* Proposed sampling
* Classes are more evenly represented in minibatches
* Benefits of proposed sampling vs. random sampling
* Higher accuracy on train, valid, test datasets, for a given # of training epochs
 Faster training time for a given training accuracy
* Assumptions
* Classification

* All classes in the training dataset have the same number of samples
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* N_=# of samples from class c in a minibatch
* Claim: N_ does not have uniform distribution
* Measure of uniformity
* Uniform distribution means: N_ = constant for all ¢ => max_N_.- min_N_=0
* Only achieved if minibatch size = integer * # classes
* If N, != constant for all ¢, then max, N. - min_ N_ should not be >>0

_ o) i . _
* Elange = €Xpected % minibatches where max. N.-min N >=t_ .

* Where t =1, 2,..

range

* For uniform distribution, E .. should be Ofort.>1
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Erange = expected % minibatches where max. N.- min_ N_>= trange
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Proposed Sampling

* Choose m, same for all minibatches

e Sort classes based on # samples remaining in
the training dataset in descending order

* For ex., # samples remaining in the training
dataset - Class 1: 4, Class 2: 7, Class 3: 6

» After sorting: Class 2, Class 3, Class 1

* Select q + 1 samples from each of the r
classes with the largest # samples remaining
in the training dataset

* Select q samples from each of the remaining
C - r classes
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Notation
Parameter Symbol
# training samples N
# classes C
minibatch size m=qC+r
quotient g = floor(m/C)
remainder r = mod(m, C)

Proposed Sampling Technique

Class i,

Class i,

Classi,,

g+1

g+1

q q

with the largest # samples
remaining in the training dataset

r classes

C - r classes

Class i¢
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* Samples are chosen without replacement
e Ifr=0,thenm=qC
* Choose q samples from each of the C classes
* For ex., if m =30, C=10, then choose g = 3 samples from every class

* Once # samples per class are determined, samples for any given class are
selected uniformly at random

* For ex., if Class 1 has 100 samples, and we need to choose 4 samples,
then choose any 4 out of the 100 samples
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g+1 samples
* C=4,N=20*4=80,m=11,9=2,r=3
. .. . - q samples
# samples remaining in the training dataset # samples in a minibatch
Batch# | Class 1 Class 2 Class 3 Class 4 Batch# | Class 1 Class 2 Class 3 Class 4
Initial 20 20 20 20 Initial

1 17 17 18 17 \ 1 3 3 2 3
2 15 14 15 14 . 2 2 3 3 3
3 12 11 12 12 .>‘ 3 3 3 3 2

If >=r classes have the largest # samples

* Pick any r classes at random

* For ex. ‘Initial’ row: we can choose any one of the following classes - (1, 2, 3); (1, 2, 4); (1, 3, 4); (2, 3, 4);

* We choose (1, 2, 4) at random
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Evaluation Dataset

* ImageNet (ILSVRC2012)
* 1000 classes
* Train dataset
* 1,281,167 samples
* Not all classes have the same # samples : Max = 1300, Min =732
* Prune dataset to get 732 samples per class
* 732,000 total samples after pruning
* Validation and Test dataset
e 25,000 samples in each
* No pruning required
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. Original, unpruned dataset
histogram of histogram zoomed

# samples in different classes in the training dataset
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ResNet34, minibatch size = 100
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ImageNet, Accuracy

For all cases, minibatch size = 100, learning rate = 0.0003, weight decay = 0.0005

Random Proposed Random Proposed Random Proposed
Model Train Train Valid Valid Test Test
Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy
(%) (%) (%) (%) (%) (%)
ResNet18 57.37 59.50 62.72 64.74 62.70 64.81
ResNet34 66.15 67.98 71.46 73.24 71.21 73.11
ResNet50 72.81 75.05 78.69 79.82 78.47 79.52
ResNet101 60.90 62.19 66.41 67.40 66.55 67.51
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# epochs needed to achieve a particular accuracy, i.e., random train accuracy from the previous slide

For all cases, minibatch size = 100, learning rate = 0.0003, weight decay = 0.0005

ade | At | o | roreed
ResNet18 57.37 30 20
ResNet34 66.15 74 38
ResNet50 72.81 94 74
ResNet101 60.90 40 26
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ImageNet, 80 Classes, Accuracy
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Randomly choose 80 out of 1000 classes in ImageNet
Minibatch size = 8, learning rate = 0.0003, weight decay = 0.001
Random Proposed Random Proposed Random Proposed
Model Train Train Valid Valid Test Test
Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy
(%) (%) (%) (%) (%) (%)
ResNet18 79.19 80.02 83.87 84.64 81.77 82.61
Accuracy Random Proposed
Model (%) # epochs # epochs
ResNet18 79.19 24 20
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Discussion

* Example, minibatch size =1

Why is the proposed sampling technique better?

Random Sampling

Large minibatch sizes: uniformity in distribution of classes within a minibatch
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Small minibatch sizes: uniformity in distribution of classes across neighboring minibatches

Minibatch 1 Minibatch 2 Minibatch x
Cl C1 C2
Proposed Sampling
Minibatch 1 Minibatch 2 Minibatch 3 Minibatch 1000 | Minibatch 1001
Cl C7 C11 C784 C1
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* Minibatch sizes
* Analyzed sizes: 8, 10, 16, 20, 32, 60

e Accuracy with proposed sampling is 1 % to 2 % higher than random
sampling

* Ran only about 10 — 20 epochs
* Did not analyze size < 8 or size > 3000
e < 8, too slow

* > 3000, resource constraints
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e Datasets with different # of classes

* ImageNet with 80 classes

e Accuracy with Proposed sampling is 1 % to 2 % higher than random
sampling

* |If # of classes is low, say 2 to 20
* No significant improvement
e Ratio of minibatch size / # classes
* Low values gives larger improvement for the first few epochs

 Similar improvement for the later epochs
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Discussion

* PyTorch
 Typical training steps with only one function changed

* Dataloader
* Input: sampler
e Output: a minibatch of samples
* Create a custom sampler for the proposed sampling technique
* Derived class from torch.utils.data.Sampler
* Determine which train samples are present in each minibatch

e Return indices of these samples
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* Proposed a new minibatch sampling technique that addresses a limitation of random
sampling

* Even representation of classes in a minibatch
* Monte Carlo simulations

* On the ImageNet dataset, across various neural network architectures and minibatch
sizes:
* For a given number of epochs, proposed sampling has an accuracy that is 1% — 2% higher than

random sampling
* For a given accuracy, proposed sampling uses 10 — 30 fewer epochs than random sampling

* Limitations
* Classification problems
* All classes must have the same number of samples in the training dataset
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e Classification problems
* Unequal number of samples in all classes in the training dataset

* Regression problems
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ImageNet dataset

https://www.image-net.org/
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