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* Introduction to federated learning in computer vision
* Federated learning architectural patterns for deployment
* Existing federated learning architectural challenges in computer vision

* Proposed federated learning with hybrid models for computer vision use
cases

* Advantages of the proposed approach and merits of the architecture

* Real world example of federated learning in healthcare computer vision
use case.

e Summary and key takeaways
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Federated learning involves multiple nodes collaboratively training a model in a distributed manner.

Federated learning normally involves a decentralization of the data by the nodes.

Step 1:Server sharing the initial learnings (L1)
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a) Centralized/global federated learning
b) Cloud-based distributed federated learning
c) Decentralized federated learning

d) Multi-task with de-centralized parameter exchanging federated learning
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Existing Federated Learning Challenges in Computer

Vision (CV)

* Unbalanced local datasets:
e Statistical differences in datasets:

* Larger number of worker nodes:

* Heterogeneous Network connectivity:

* Heterogeneous Computer power:

* Data Privacy Concerns
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* For computer vision/CV tasks such as object detection the size of model would be large.

* Data Aggregation, Data sovereignty and Data provenance issues.

* Spatial Data Heterogeneity across the Training Nodes.

Classical FL Topology
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Proposed Federated learning with Hierarchical FL for Computer ev”ibseij%‘ﬁ

Vision(CV) with FedCV framework

SUMMIT

* FedCV framework is FL topology, architecture variants agnostic.
* Ease of use FedCV API’s

* FedCV is a distributed training toolkit for analysis, benchmarking, library and platform for
executing CV applications.

* FedCV helps in bridging gaps between SOTA algorithms and facilitating the development
of different variant of FL techniques.

* FedCV reduces engineering development effort with multiple embedded features.
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Proposed Hierarchical FL Technique VISI'N
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Proposed Hierarchical FL learning layer has the following advantages

By doing the learning in these smaller Micro-batches based training.

* Nodes then perform small batches of training on their local data.

* Periodically, each training node submits ML model parameter/weight updates to the central node.
* Holistic view during FL based model weights update and convergence.

* This process can either take place indefinitely or be repeated until the FL model converges with
respect to some evaluation metric (e.g., mean average error, accuracy).
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Proposed Hierarchical FL Top
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* Multi node and Multi layered architecture with FL technique.
* Failure of operation of FL architecture is minimal
* CV application context and data specific significance given to the creation of FL weights.
* Tree based Hierarchical FL improves the convergence performance.

* The location of aggregator nodes need not be pre-determined in an H-FL architecture which
gives flexibility

* Network Topology specific routing of incoming inferencing APl requests.
* No fixed location of aggregator and Non-aggregator nodes.

e Aggregator nodes may be dynamically placed within the network to improve model accuracy and
execution performance.
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Performance Improvements Results — FedCV based eﬁ?fﬁﬁ N

Training and Evaluation ST

Results

FedYogi
M Accuracy

FedCV
FedAdam

FedAvg

0.898 0.9 0902 0.904 0906  0.908 091 0.912 0914 0916 0.918

Rounds: # of rounds to >90% test accuracy.
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Problem:
Medical data and Healthcare vertical faced insurmountable hurdles with patient privacy concerns, data silos, and ethical issues.
Solution:
* Federated learning empowers individual devices and institutions to collaboratively train Al models.
* Federated learning offers network of hospitals, each holding unique clinical datasets.
* Patient privacy, Data sovereignty, Data lineage ensured with FL

Advantages of Federated Learning in Healthcare:

* FL could be used to provide Targeted Precision medicine for a Patient to cure from Fatal diseases.

* Patient's privacy ensured but at the same time real time data collected and monitored locally in a FL architecture.

* Country, Region specific Medical data Compliance could be achieved with FL architecture.

* FL scalable across a Global chain of Hospitals, Medical research Institutions with data loss and ensuring data Privacy.

» Democratization of Vaccine and Medical IP to enable low cost medicine in a specific region/Country.
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Real-world Example in Healthcare
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* Federated learning (FL) is a decentralized approach to training machine learning models.

* Federated learning gives advantages of privacy protection, data security, and access to
heterogeneous data.

* Federated learning architectural paradigm complies with data sovereignty norms.
* Federated learning with good architectural patterns can be used for CV use cases.

» Selection of the right FL software framework (FedCV), API’s, hierarchical architectural
design pattern is important for CV use case.

* Ongoing research and industry work in the intersection of FedCV based FL techniques
and LLM’s to build different Multi-modal LLM applications.
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