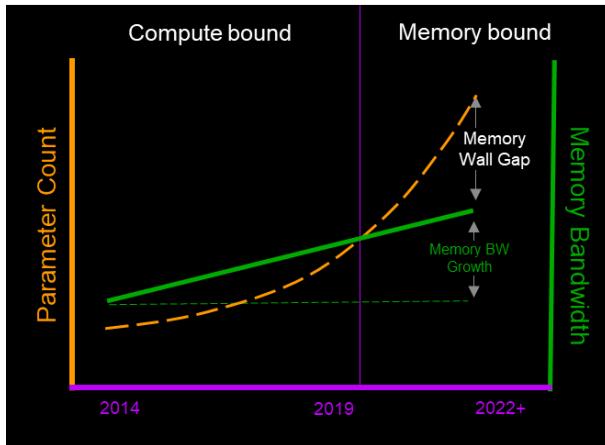


Addressing Evolving AI Model Challenges Through Memory and Storage

Wil Florentino
Senior Segment Marketing Manager
Automotive and Embedded Business Unit

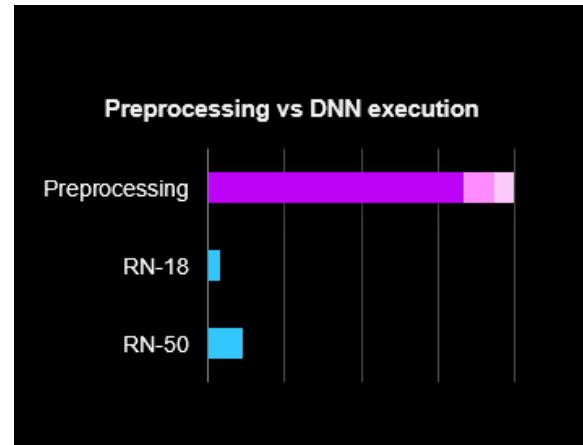
Embedded AI Reveals Memory As Critical Consideration

Model Complexity vs Memory Bandwidth



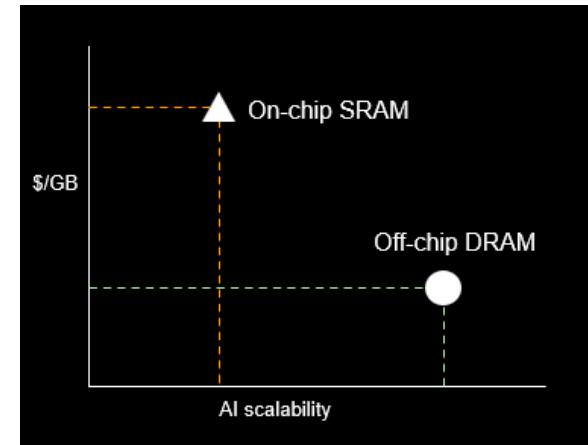
Transformer Size growth 410x / 2 years
AI HW Memory bandwidth 2x / 2 years¹

Preprocessing Latency vs NN execution



Video image preprocessing overhead impacts latency and DNN execution²

\$/GB vs Scalability



SRAM: \$5,000/GB
DRAM: \$50/GB³

1) "AI and Memory Wall", Medium, 2021

2) "Accelerating Queries over Unstructured Data with ML", Stanford Dawn, 2020

3) "SRAM vs DRAM: Difference Between SRAM & DRAM Explained", Enterprise Storage Forum, 2023

Edge deployments and Memory densities

Embedded AI will be dominated by ASIC accelerators and NPUs

Model size ↓

Near-edge deployment

Training and inference happens close to the device

	Model name	Params	Tasks	Minimum Memory	Algorithms	Hardware
Near-edge deployment Training and inference happens close to the device	Ex. Llama 3.1, Gemma 2, etc.	1B+	Scene understanding	6 GB +	Multimodal, Transformer, LLM, VLM, CNN, RNN, FNN, CLIP	FPGA, ASIC, SoC, NPU, MCU, GPU, ULP-CPU, Edge Server, Gateways, IPC, PLC
			Inventory tracking			
			Classification			
			Others			
On device Inferencing happens on the edge device	DEIT_Base	86.5M	Classification	400MB – 4 GB	LLMs, VLM (2025), CNN, RNN, ML	FPGA, ASIC, SoC, NPU, MCU, GPU
	YoLoV7e6	97.2M	Object detection			
	CLIP_ResNet_50x4	87M	Zero-shot classification			
TinyML on device Training and inference happens on the edge device	SSD_MobilNet_v2	4.46M	Object detection	320 kB – 64 MB	CNN, ML	FPGA TML, MCU, NPU, ULP-CPU
	SqueezeNet v1.1	1.24M	Classification			
	EfficientNet_Lite1	4.73M	Object detection			

Table 1: model name, number of parameters, task it can perform, memory required for deployment type, and possible algorithms

Shipment unit trend of architectures relevant to Industrial¹

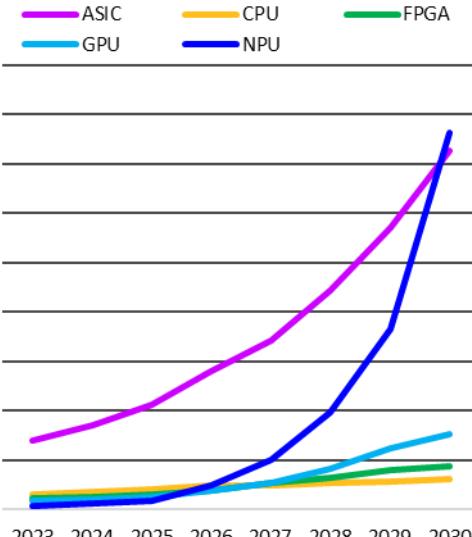


Fig 1: Shipment unit trend and CAGR 2024-2030 of edge AI and TinyML architectures

Numerous AI Tasks deployed in industrial applications

AI Tasks in Factory Automation

- Vision
 - Object Detection
 - Image Classification
 - Semantic Segmentation
 - Image Captioning
 - Image Denoising

- Numeric
 - Pattern Recognition
 - Multistage Reinforcement learning

- Multi-Modal
 - Scene Understanding
 - Vision Language Action
 - Multi-Step Planning

AI Tasks in Transportation

- Vision
 - Zero Shot Object Detection
 - Zero Shot Image Classification
 - Semantic Segmentation
 - Facial Expression Recognition

- Audio
 - Automatic Speech Recognition

- Multi-Modal
 - Scene Understanding
 - Multi-Step Planning
 - Semantic Reasoning

AI Tasks in A&D

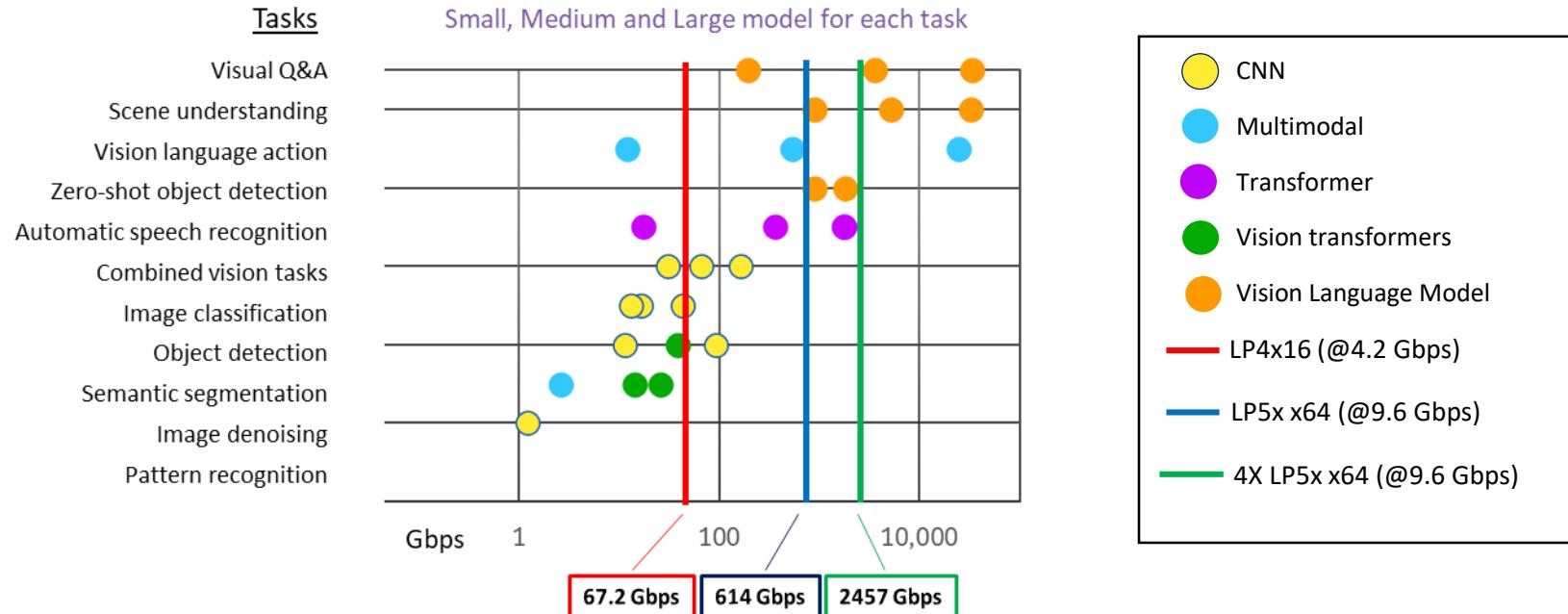
- Vision
 - Image Denoising
 - Object Detection
 - Object Tracking
 - Zero Shot Image Classification
 - Semantic Segmentation

- Audio
 - Automatic Speech Recognition

- Multi-Modal
 - Scene Understanding
 - Multi-Step Planning
 - Semantic Reasoning
 - Adaptive Skill Coordination

Support for more complex models and tasks require higher memory performance

Typical bandwidth for real-time inference tasks
Gbps for real-time inferencing



Source: Micron Marketing internal analysis; assumptions on % of system memory bandwidth utilization, inference precision, real-time compute time scale – offered as representation only

Memory bandwidth is critical for generative language

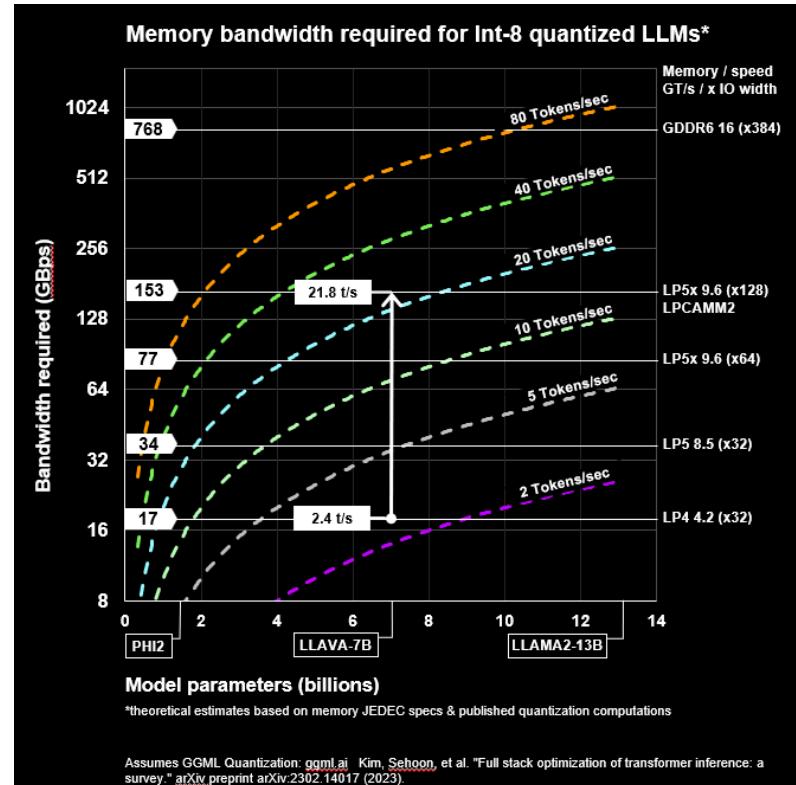
- Models are very large and often need to fit in DRAM
- Bandwidth is critical to quality of service
 - Tokens/sec is highly correlated with DRAM bandwidth

The image shows a person ironing clothes on a ...

The image depicts an unusual scene where a man is ironing clothes on an ironing board placed on the back of a moving vehicle, specifically a yellow SUV. This is not a typical activity one would expect to see on a city street, as ironing is usually done indoors in a stationary position to ensure safety and to prevent accidents. The man's actions are not only unconventional but also potentially dangerous due to the risk of falling or being hit by other vehicles or pedestrians. Additionally, the presence of a taxicab in the background adds to the urban environment, which makes the scene even more out of the ordinary.

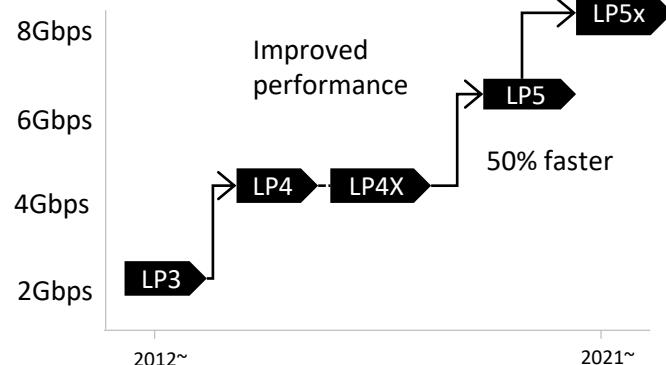
* [LLaVA \(llava-vl.github.io\)](https://llava-vl.github.io) |

Assume 1 token/word | Excluding time to first token



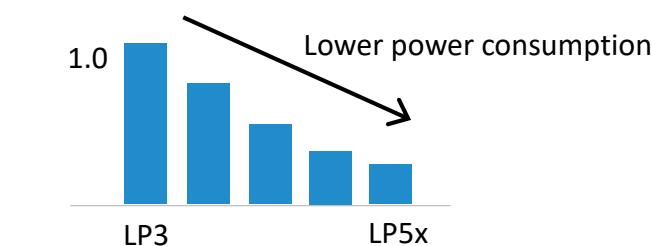
LPDDR5X offers a leap in performance and possibilities

Data rate

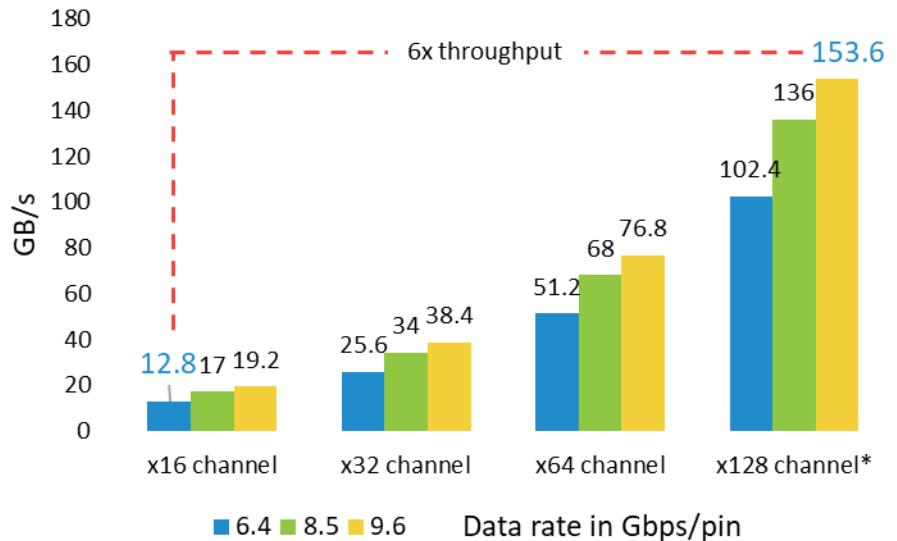


Reduced power consumption

[mW/GBps index]



LPDDR5X bandwidth for different channel size and pin speed performance



- Reduces number of components to get to same bandwidth
- Improved architecture
- Lower power [pj/bit]

Based on Jedec standards and performance comparison

*Based on LPCAMM2

micron

LPCAMM2 for AI-equipped systems

Performance

- Speed capability of up to 9600Mbps utilizing LPDDR5X technology
- Full 128-bit, dual-channel, low-power modular memory solution
- AI inference systems

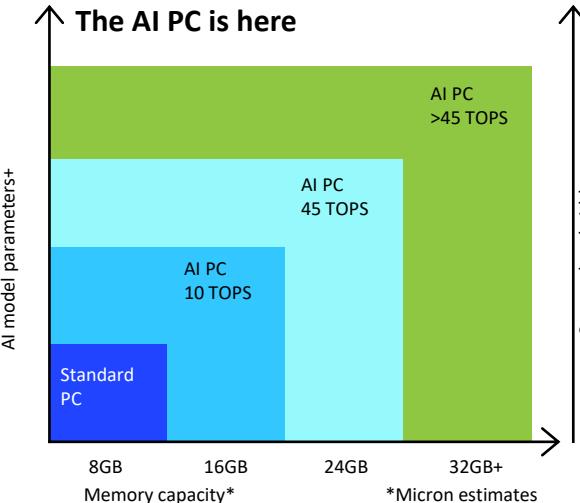
Modularity

- LPCAMM2 provides users with the flexibility to upgrade system memory capacity
- Provides OEMs with a standard PCB for all memory configurations

Form factor

- Consumes 57-61%¹ less active power and up to 80%¹ less system standby power compared to DDR5 SODIMM
- Thermal efficiency, fanless computers

Power efficiency



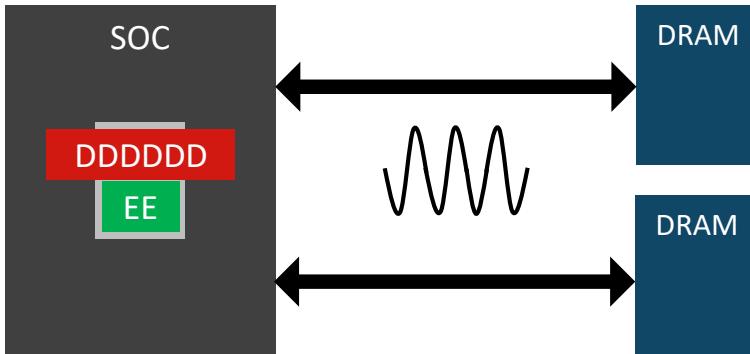
- High speed
- Energy efficient
- Modular and serviceable
- Space savings

¹ Power measurements in mW per 64-bit bus at the same LPDDR5X speed compared to SODIMM

² Calculation based on comparison of the total volume of commercially available dual-stacked DDR5 SODIMM module (32,808 mm³) to LPLPCAMM2 module (11,934 mm³).

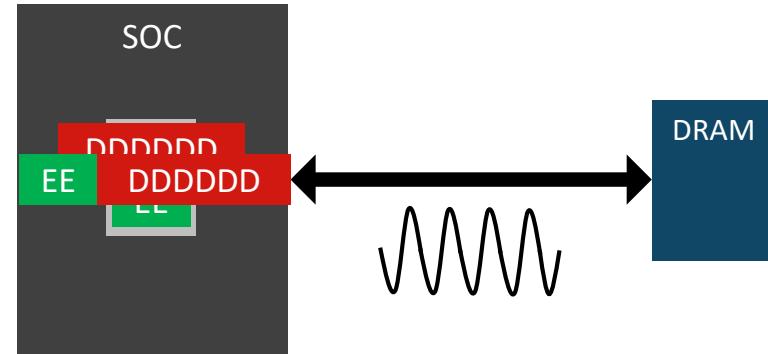
Options for system ECC

Traditional approaches have limitations



Sideband ECC

- Parity bits are generated by the SOC and transmitted in parallel with mission data to a separate component
- No mission data bandwidth/capacity impact
- Higher cost (extra component, board space, routing, SOC PHY area, power, etc.)



Inline ECC

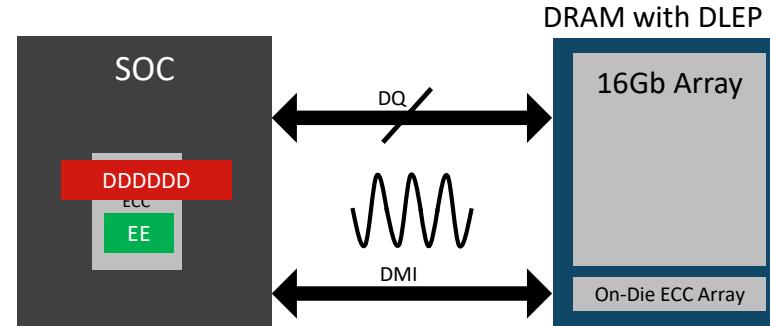
- Parity bits are generated by the SOC and transmitted in serial with mission data (more clocks to transmit same number of bits)
- Reduction in mission data bandwidth and capacity
- Lower cost (no extra component and associated system impacts)

Direct Link ECC Protocol (DLEP)

Higher performance advantage for safety critical systems

Highlights

- **Increased effective memory bandwidth**
 - Recovers 15% to 25% of memory BW consumed by inline ECC
- **Increased memory capacity**
 - Up to 11% increase in available memory capacity per device vs standard LP5³
- **Reduces power consumption**
 - Approximately 10% lower power (pJ/bit)
- **Significant system BOM savings**
 - \$200M+ potential TCO reduction over platform lifetime^{1,2}
- **Enables Functional Safety**
 - Compatible with more robust ECC schemes critical for ASIL- D⁴
- **Full Portfolio**
 - Available on all Micron LP5X products



DDDDDD = mission data, EE = ECC parity (ratio of data to parity shown is for conceptual purpose only)

LP5x has a Direct Mask Inversion line

1. \$40+ system cost reduction (assumes 2 SoC) from DRAM, SOC and PCB savings in ADAS & IVI for 500GB/s effective memory bandwidth, \$200M TCO savings based on 5M car sales over platform lifetime
2. Assumes 20% system bandwidth loss of comparable system using inline ECC
3. 11% capacity increase assumes comparable system using 64+8 inline ECC
4. 256+16 SECDED transported/stored with DLEP: SBE 100% detect/correct, DBE 100% detect, MBE 99.9% detect

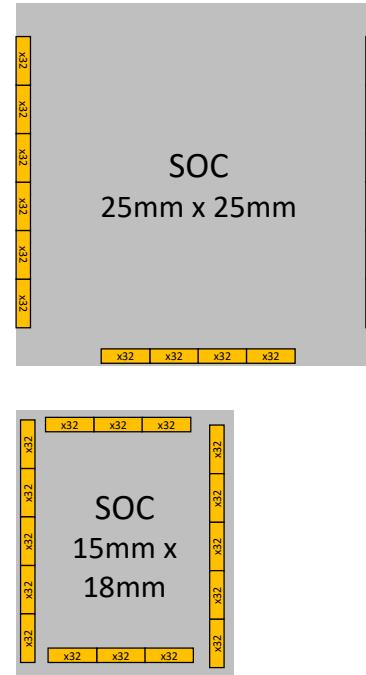
DLEP improvements on 32 channel LP5x bus

JEDEC System (No DLEP)

Speed	9.6 Gbps
Total CH	32
Density/CH	16 Gb
Total IO	512
Total BW	614 GB/s
Effective BW*	491 GB/s
Total Power	19.7 W
Total Capacity	64 GB
Usable Capacity*	57 GB
PHY shoreline	56.8 mm
PHY area	46.4 mm ²
Effective BW/mm	8.6 GB/s

DLEP System

Speed	9.6 Gbps
Total CH	32
Density/CH	16 Gb
Total IO	512
Total BW	614 GB/s
Effective BW	614 GB/s
Total Power	19.7 W
Total Capacity	64 GB
Usable Capacity	64 GB
PHY shoreline	56.8 mm
PHY area	46.4 mm ²
Effective BW/mm	9.6 GB/s

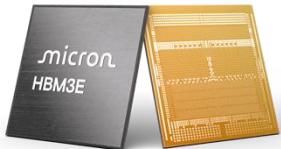


* Assumes system using 64 + 8 SECDED Inline ECC

Micron AI memory and storage portfolio

Leadership products to enable AI workloads

EMBEDDED
VISION
SUMMIT[®]



High-bandwidth in-package memory
HBM3E

High-performance graphics memory
GDDR7

High-capacity DRAM
128GB DDR5 using monolithic 32Gb DRAM

Compute DRAM
DDR5

Low-power memory
LPCAMM2

Low-power memory
LPDDR5X

Universal flash storage
UFS 4.0

Memory expansion with CXL™
CZ120

High-performance data center NVMe™ SSD
Micron 9550

High-capacity data center NVMe™ SSD
Micron 6500 ION

Summary

Micron memory enables all forms of AI embedded solutions

Smart factory
and robotics

Industrial AR/VR

AI-enabled video
security and analytics

Low earth orbit (LEO)
communication

Smart grid and
clean energy

Drones and
industrial transport

Inference tasks and model requirements point to memory as a bottleneck

- 200x growth in transformer size vs. memory bandwidth
- Pre- / post-processing is estimated 25x latency vs DNN
- On-chip SRAM is cost prohibitive vs. external DRAM

Memory technology influences AI model execution performance

- Multiple Tasks are used in each industrial application
- Edge deployments will require higher memory density to support AI models
- Memory bandwidth is critical to support real-time task operations
- Generative language memory bandwidth is required for quality of service

Leading memory technologies offer the best mix of solutions for edge AI

- LPDDR5 for neural network compute
- LPCAMM2 leverages LPDDR5X performance with DIMM module modularity
- DLEP feature recovers up to 25% memory bandwidth

Resources

- Useful Resources:
 - [Micron Technology | Global Leaders in Semiconductors | Micron Technology Inc.](#)
 - [AI and Machine Learning | Micron Technology Inc.](#)
- Please visit Micron's booth #303.

Thank You!