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What is Tokenization?
Tokenization is the process of converting a sensor modality into a neural encoding.
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Examples of Tokenizers
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Tokenizer is a Feature Extractor
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ResNet101

Classification DetectionSegmentation

• Serves as a feature extractor for a 
neural network

• Enables features like classification, 
generation, RAG



Multimodal AI
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SigLIP / Gemma



Tokenization Creates a Form a Data Compression
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• Tokenizer and detokenizer act as a Codec
• Saves power during transmission
• Saves capacity at rest



Compute Memory Bandwidth

High High High

Medium Medium Medium

Medium Low Low

Low Low Low

Low Low Low

© 2025 VeriSilicon and Google 8

Diverse Hardware Ecosystem
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World’s Leading Smart Home Products



Can we combine the strengths of 
multiple devices for GenAI experiences?

We think yes.
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Anatomy of a Neural Cascade
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Building a Large Gating Model

• We can build a gating model using a VLM

• Provide a prompt to describe what you 
want to detect. i.e.: “Is there an animal 
present?”

• Feed tokenized image into VLM

• Check probability of emitting “Yes” or “No”
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Distilling a Smaller Gating Model
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Composing Models
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Cascades Beyond Two Devices
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Squeezing Neural Cascade Frontend into Small Devices

• Knowledge distillation
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• Quantization

• Sparsity, weight sharing

• Hybrid architecture
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Image Token Compression

• Reducing image token numbers by text prompt
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QueCC (ICLR 2025, arxiv:2411.03312)
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Project Open Se Cura – Edge and Cloud Collaborative 
Computing 

Extremely low power consumption
• Always on
• Ambient computing

Realizing large models everywhere
• Responsiveness
• Privacy (local & cloud)
• Computational resources

Cloud computing
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Kelvin: A RISC-V ML Accelerator for Edge

Kelvin is a RISC-V based ML Accelerator

• Open-source design as part of Open Se Cura

• Provides familiar framework for programming 
ML kernels to experts with SIMD/GPU 
experience

• Support for RISC-V Vector and Matrix 
extensions is in development, targeting 256+ 
MACs/cycle

• Security extensions via CHERI are on our 
roadmap
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VeriSilicon AI-Computing IP Product Lineup
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Inferencing

Training
Inferencing

VIP9X00
(NPU IP)

CC9X00TC-MP
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Data Center
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High Efficiency Inference NPU for VLMs & LLMs

Qwen2 

1.5B
VIP9000
4 TOPS 
16 GB/s

LLaMA2 

7B
VIP9000
40 TOPS 
128 GB/s

LLaMA3 

70B
VIP9400
160 TOPS
512 GB/s

Embedded Devices AI-PC, Mobile Edge Server
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Summary and Challenges

Summary

• Tokenizers provide a framework 
building multi-modal LLMs

• Distillation based training can 
create a gating mechanism to 
separate tokenizers from the LLM

• Once separated, compute can be 
distributed between embedded 
devices and the cloud

Challenges

• Technical
• Memory and compute scaling for 

tokenizers and LLMs

• Infrastructure for training 
distributed models

• Ecosystem
• Changing model landscape

• Diverse hardware landscape

• Fostering community
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Gemma

https://ai.google.dev/gemma

Project Open Se Cura

https://www.opensecura.googlesourc
e.com

VeriSilicon NPU IP

https://www.verisilicon.com/en/IPPor
tfolio/VivanteNPUIP

2025 Embedded Vision Summit

Visit us at booth 508!
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Resources

MAIN
ENTRANCE
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