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What is Tokenization?

Tokenization is the process of converting a sensor modality into a neural encoding.
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Tokenizer is a Feature Extractor

* Serves as a feature extractor for a
neural network

* Enables features like classification,
generation, RAG
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SigLIP / Gemma
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Tokenization Creates a Form a Data Compression

* Tokenizer and detokenizer act as a Codec
e Saves power during transmission
* Saves capacity at rest

0{335
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Diverse Hardware Ecosystem

Compute Memory Bandwidth
High High High
Medium Medium Medium
Medium Low Low

Low Low Low

Low Low Low
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Can we combine the strengths of
multiple devices for GenAl experiences?

We think yes.
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* We can build a gating model using a VLM i
* Provide a prompt to describe what you a VLM |
want to detect. i.e.: “Is there an animal 3!
” =
present? ! I 0
* Feed tokenized image into VLM § Text
Check probability of emitting “Yes” or “No” & cmbedder
eck probability of emitting “Yes” or “No ; “Stherean
S animal present?” :
Image
Tokenizer
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Distilling a Smaller Gating Model
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 Knowledge distillation e Sparsity, weight sharing
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Image Token Compression

* Reducing image token numbers by text prompt

Compression
Ratio

16x

36x

144x

576x

Method # Token \ GQA MMB MME POPE SQA TextVQA VizWiz VQAv2
LLaVA-1.5 576 | 62.0 643 1510.7 859 66.8 58.2 50.0 78.5
PruMerge ~32 57.2%  60.9 1350.3 763 685 56.0 45.2* 72.0
TokenPacker 36 59.6  62.8  1440.9* 83.3¥ T71.0%  53.2* 50.2 75.0
Matryoshka Multi. 36 60.3 64.8 - 85.5 - - 52.8 -
Matryoshka Query 36 58.8 634 14163 819  66.8 - 51.0 73.7
QueCC 36 60.5 62.5 1442.0 845 70.6 5313 50.1 75.8
TokenPacker 16 | 58.9% 62.7% 1378.8% 83.7% 68.1% 52.5%  50.5%  744%
Matryoshka Query 16 57.6 619 1408.5 80.8 67.5 - 49.8 71.1
QueCC 16 59.0 622 1408.0 834 70.7 51.3 47.7 74.5
TokenPacker 4 56.2*  6L.5* 1347.6% 81.7% 68.5*  49.2% 45.7* 70.5%
Matryoshka Query 4 53.0 565 11761 776  65.1 - 49.4 64.1
QueCC 4 56.5 62.1 1390.3 81.8 68.6 48.7 45.0 70.6
TokenPacker 1 53.4%  58.7% 1262.4* 80.7* 69.4*  46.2* 41.1* 66.9%
Matryoshka Multi. 1 52.6  59.5 - 78.4 - - 49.4 -
Matryoshka Query 2 50.8 544 11440 745 650 — 48.5 61.0
QueCC 1 53.5 59.4 1269.1 81.3 69.9 46.8 M1 673
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Project Open Se Cura — Edge and Cloud Collaborative AEEELED
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N/

NS

Cloud computing

Realizing large models everywhere
Extremely low power consumption « Responsiveness
* Always on * Privacy (local & cloud)
* Ambient computing « Computational resources
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Kelvin is a RISC-V based ML Accelerator

* Open-source design as part of Open Se Cura

* Provides familiar framework for programming
ML kernels to experts with SIMD/GPU
experience

e Support for RISC-V Vector and Matrix
extensions is in development, targeting 256+
MACs/cycle

* Security extensions via CHERI are on our
roadmap

ML

X022 00D,

SIMD || SIMD
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Data Center

Server Chips CC9X00TC-MP
(GPGPU+NPU IP)

VIP9X00CC

Edge Serer (NPU+GPGPU IP)
Chips

VIP9X00 Training
Emtfedded (YVAT) Inferencing
Devices Inferencing

Incremental
vIP . .
Nano/PICO Training
Inferencing

Sub TOPS
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Summary Challenges
 Tokenizers provide a framework * Technical '
building multi-modal LLMs * Memory and compute scaling for

tokenizers and LLMs
* Distillation based training can

create a gating mechanism to
separate tokenizers from the LLM

* Infrastructure for training
distributed models

Ecosystem
* Once separated, compute can be e Changing model landscape
distributed between embedded - Diverse hardware landscape

devices and the cloud *  Fostering community
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Resources

Gemma

https://ai.eoogle.dev/gemma

Project Open Se Cura

https://www.opensecura.googlesourc
e.com

VeriSilicon NPU IP

https://www.verisilicon.com/en/IPPor
tfolio/VivanteNPUIP
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2025 Embedded Vision Summit
Visit us at booth 508!
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