

Voice Interfaces on a Budget: Building Real-Time Speech Recognition on Low-Cost Hardware

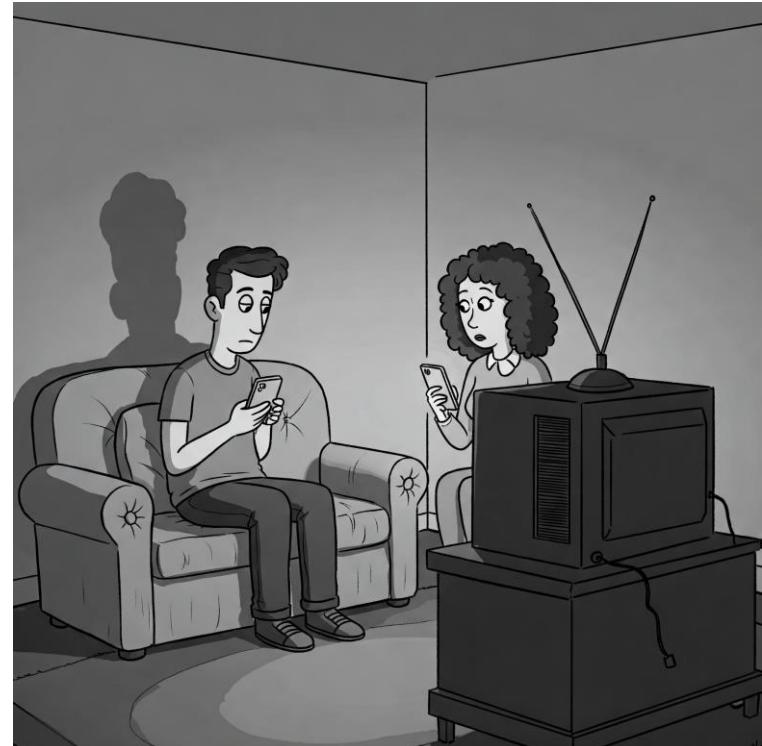
Pete Warden

CEO

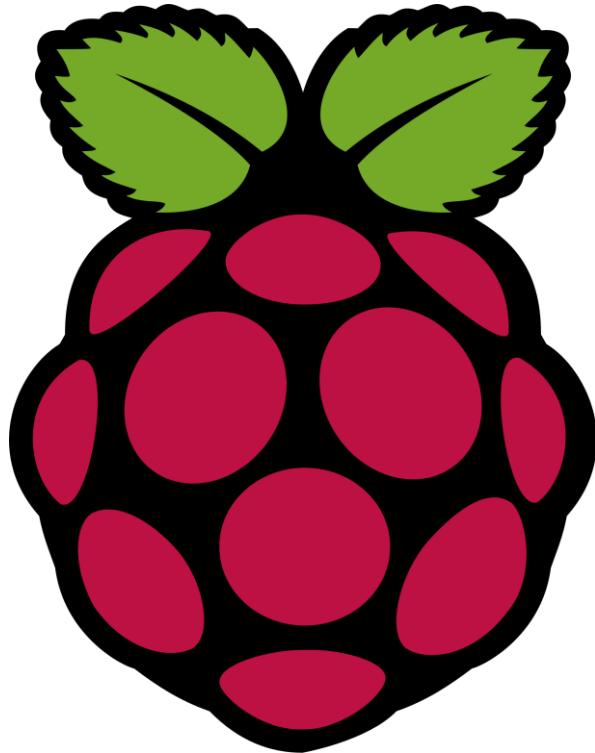
Useful Sensors

What Is This Talk About?

- Voice interfaces in the past:
 - Cost \$\$\$
 - Only available to big tech co's
 - Required specialists
 - Took years to build
- Voice interfaces now:
 - Open source
 - Available to everyone
 - Usable by any software engineer


What You'll Leave With

- How to build a simple voice app
 - Running on low-cost hardware (Raspberry Pi)
 - Without a cloud API or network connectivity
 - Using open-source, freely available software and models


Does Anyone Use Voice Interfaces?

- Siri, Alexa, Ok Google?
 - No, except for timers and baby shark
- However, a thought experiment:
 - You're next to your significant other on a couch
 - Do you text them to decide what show to watch?
 - So, we do like voice interfaces, but the current ones aren't good enough

What Do You Need to Start?

- Cortex A CPU or equivalent
 - MCUs soon, hopefully
- Open source frameworks
- Open weights speech recognition models

Speech Recognition Models

- OpenAI's Whisper
 - First production-quality open weights ASR model
 - Smallest version is 40 million parameters
 - Can run on APUs, but hard to get real-time
 - Always processes 30 seconds of audio at once, very wasteful for interactive use cases
- Useful Sensors' Moonshine
 - Open weights
 - Achieves same accuracy as Whisper for tiny and base models
 - Smallest version is 26 million parameters
 - Able to run well on most modern APUs
 - Flexible input window, so you only compute what you need

Moonshine Options

- Tiny version:
 - 26 million parameters
 - Word error rate of 4.51%
- Base version:
 - 52 million parameters
 - Word error rate of 3.29%
- Tutorial uses Tiny
- Many frameworks supported:
 - PyTorch
 - Keras
 - TensorFlow
 - ONNX
- We're using ONNX
- Quantized versions available:
 - 26 MB / 56 MB file sizes
 - 1.6x faster than float

Tutorial

Now I'll show you how to run an interactive speech application using Moonshine on a Raspberry Pi 5.

Based on material from my Stanford EE292D Edge AI course:

<https://github.com/ee292d/labs/tree/main/lab4>

You'll need a Pi 5, some way to connect to it, and a USB microphone.

Live Coding Demo

Next Steps

- How can you take action based on speech?
 - Plain old string matching can work for simple uses
 - Recognizing a natural speaking style needs speech to intent
 - Still a research problem
- <https://github.com/AIWintermuteAI/Speech-to-Intent-Micro>
- What about text to speech?
 - Speakers are a cheaper alternative to displays
 - PiperTTS is very efficient, runs on Pi's, and sounds good
 - Hyper-realistic models are emerging, but they use a lot of resources, won't work on a Pi (yet)

Conclusion

- It's never been easier to build a voice-driven product
- It's still early days for voice, don't write it off because Siri isn't popular
- You've got this!

Resources

Whisper:

<https://openai.com/index/whisper/>

Moonshine:
<https://github.com/usefulsensors/moonshine>

PiperTTS: <https://piper.ttstool.com/>

Speech-to-intent Micro:

<https://github.com/AIWintermuteAI/Speech-to-Intent-Micro>

EE292D Tutorial:

[https://github.com/ee292d/labs/tree/
main/lab4](https://github.com/ee292d/labs/tree/main/lab4)

Me: pete@usefulsensors.com