ONNX and Python to C++:
State-of-the-Art Graph Compilation

2025
EMBEDDED

VISION

SUMMIT

Nigel Drego
Co-founder & CTO
Quadric

N>

Quadric

©2025 Quadric Inc.

EMBEDDED

About Quadric VISION

SUMMIT’

Pure play Semiconductor IP Licensing
* Processor IP & Software Tools

Edge / device Al/ML Inference + DSP processing

HQ: Silicon Valley — Burlingame CA
Venture Capital funded

3
b4}

™ .
e ,
devkit1.0 ®

b

quadric O
f"[:ﬂ R” ;.
00

Successful 15t silicon in 2021

Mar 2021: First working silicon
May 2023: First IP delivery, DevStudio Online

2
=
(&)
b
n
Q
f=—
c
()
>
o
| .
o
o
o
2
Dec 2024: First multicore cluster delivery)

Patents: 28+ Granted
= _

Quadric
©2025 Quadric Inc.

Chimera GPNPU Block Diagram
A Hybrid Between a CPU and a Systolic Array

EMBEDDED

VISION

SUMMIT

Instruction
Cache

Instruction Fetch

Processing Element

Ir struction Port

32 Entry

ay)

; A
DMA Neighbor ChimerdY
Access S — i

Instruction Dispatcher
+ Scalar Unit

LRM - Local Register Memory £ T
(2K or 4KB SRAM) cl Bl e 4 Debug —
File o =j w :
© =1 Control / Status o '
15 2
. ® :
MACs ® " 32bit ALU @ = 2D SIMD Processing Elements
(Full C++ Target) 3 L D (Vector, Matrix, Conv Ops) -
< -
= [s
& — L2 =l
T 27T Memoy T w
5 § Y B
D 1
w B
5 R < R
i
Data Distributed Local Register Memory
Compute M
Movement Number of PEs 64, 256, 1024
— vois — e

64b Instruction Encoding — Compute & Data Movement

Scalable: 1 TOP to 864 TOPS

Up to 40 TOPS/W (running ViT in 3nm)

Quadric ©2025 Quadric Inc.

1 MB to 16MB

Quadric SDK Overview

Python “gl de” - 0 .
T ety N ChiPy Compiler B

Ten.s?: PYTHRCH
User-selected Model ONNX format J Op.en-lSource)
Any Model, Any Operator L QUant'zat|0n T00|In
Relay format
* No Special Network preparation l ¥
. No substitution of Operators Chimera Graph Compiler (CGC)
° rer_nova orlayers . Proprietary Chimera I.R. w/ numerous optimization passes

« No reliance on Quadric to prepare models

User DSP Application
Code (CCL C++)

User Custom Operators N
CCL C++) i

|\ Chimera LLVM C++ Compiler

Chimera ISS Target Silicon with

(Cycle approximate / System C) Chimera GPNPU

Quadric ©2025 Quadric Inc.

EMBEDDED

VISION

SUMMIT

Chimera runs Graph Code, C++ and
Python code

Chimera SDK runs on
user-premises or user-cloud

Pre-packaged Docker container
version available

Optimized C++
Function Libraries

EMBEDDED

Chimera Graph Compiler (CGC) VISION

SUMMIT’

Graph Import and Successive Lowering & Memory Usage

C++ using

Optimizations Optimization Passes Optimizations CCL API

. Import
Graph analysis (operator compatibility, quantization completeness, custom operator ID)
Graph simplification / canonicalization
Constant propagation

. Graph optimization
Quantization scheduling (with activation range analysis)
Graph serialization
Fuse operators and select implementations to minimize data movement costs

. Memory optimization
Tensor format layout analysis (both L2 and LRM)
Intelligent weight prefetching

Quadric ©2025 Quadric Inc.

EMBEDDED

Chimera Graph Compiler - High Level Architecture VISION

SUMMIT’

. Chimera Graph Compiler (CGC) leverages the TVM project framework
. Architecture-aware Quadric specific “middle-end”

Injects Quadric-specific data layouts early in the lowering flow

Hardware aware mapping Op selection

Memory scheduling to maximize LZMEM & LRM utilization (lowers power)
. Direct control flow mapping from Relay -> C++

Create highly optimized code for GPNPU

i i Quadric
TF / PyTorch / Quadric Operator Quadric
ONNX - 2 - Mapping ~ wm Data-layout wmp LRM/L2 bad Quadric C++
Optimizati Assi t Optimization
ptlmlzatlons gnmen
- Fully customized middle & back-end in TVM

Quadric , 6
©2025 Quadric Inc.

EMBEDDED

VISION

Layout Optimization
SUMMIT

. Transform non-NCHW formats to NCHW where possible

* Many shape transformation ops can be eliminated, even in
Multi-Head Self Attention 1x128x56x56

Transpose

. Example: LayerNorm operating over channel dimension 1x56x56x128

DequantizeLinear

. Solution: Analyze dimension dependencies, then sink
transpose across ops

1x56x56x128
e Can handle arbitrary sequences of shape transformation LayerNormalization

operations)

1x56x56x128

LayerNormalization

NCHW = Number of samples, Channels, Height, Width _
& 1x56x56x128

Quadric ©2025 Quadric Inc.

EMBEDDED

Layout Optimization VISION

SUMMIT’

. Process graph in an edge-wise manner:

External Memory

An edge has a producing operator, i.e., Conv
and a consuming operator, i.e., ReLU

1
/ | L2 Memory | \
. Utilize information about op’s consumed layout(s) ' ,

! | I
and prOduced Iayout(S): Local Register: Local Register| | | |Local Register
Memory Memory Memory

o 7 H s e .
. Layout” refers to data placement in PE-array, o —_r e

not L2 or external memory
Op can have multiple implementations: |

different consumed / produced layouts

| | |Local Register Local Register | ~_| |Local Register| | |

Enumerate producer/consumer layout pairs Memory Memory - | I

and select pairs with lowest cost \PE-N-LO PE-N-1,1 PE-N-my

©2025 Quadric Inc.

=

Quadric

Un-optimized CGC Optimized EMBEDDED
Deep LRM-baSEd Fus'on Network: 17 Layers Network: 1 Layer VISION
SUMMIT
* Other NPUs refer to “fusion” as keeping data on-chip
* Chimera fusion keeps data within PE’s LRM
* Element-wise ops fused by keeping in registers = Fusion i
« Other ops via LRM-based fusion o uston in
e Convolutions = Local Memory
. MHSA T (FILM)
« Normalizations (e.g., LayerNorm, GroupNorm, etc) saves power,
Chimerd = increases
e = erformance
e - = P
< 5 5 | |
g % ‘_-’:I 2[:\223:;::;5 Elemenis l: E
H E Mel;rzlory ;
Quadric © 2025 Quadric Inc. Fusion Example: Blog link ’

Distributed Local Register Memory
(LRM)

https://quadric.io/2023/09/13/how-to-unlock-the-power-of-operator-fusion-to-accelerate-ai/

B
EMBEDDED

CGC Generated Code Example VISION

Architected to Run a Single Code Stream For Scalar, Vector & Matrix Computations SUMMIT

for (int32_t th_y1 = 0; tb_y1 < 14; ++tb_y1) {
folint32_ttb_x1 = 0; th_x1 < 14; ++tb_x1) {

Scalar Variables

container::NDArray<qVar_t<int8_t>, 27> ocm_tensor_0_rf;

ocm_tensor_0_flow_1.read(ocm_tensor_0_rf);

Flow/DMA APIs

container::NDArray<qVar_t<int8_t>, 32> T_glinear_conv2d_rf;

~
R BroadcastFlow<TensorAccessor<MinRoiDescriptor<OcmTensor<std::int8_t, 1,1, 1, 1280>,... >

o for (int32_tchl=0;chl<32; h1
Vector/Matrix U AR =R« 2w

Variables

*anr7t<int327t> _0=nn::convTileBlockint8<std::int32_t, 27, 1, 0, false>(ocm_tensor_0_rf);

gVar_t<int32_t> _11 = gBroadcast<O0, std::int32_t, BroadcastAction::POP>;
T_glinear_conv2d_rf[(ch1)] =
Fused Elementwise math::min(math::max(cgc::fxRoundPosInf<23>(math::fxMul<31>(math::min(math::max(math::fxMul<2>((math::min(math::max(cgc::fxRoundP
Any activation can be osInf<2>(math::fxMul<29>((_0 + _11), 4679030)), -128), 127)), 58507024), 0, 3.2212255e+09f, 1231605867)), -128), 127));
}
coded up
De-quantize math

container::NDArray<qVar_t<int8_t>, 32> T_glinear_conv2d_rf1;
for (int32_t ch2 = 0; ch2 < 32; ++ch2) {
gVar_t<int32_t> _2 = nn::groupwiseConvTileBlockInt8<std::int32_t, 1, 3, 1, O, false>(T_glinear_conv2d_rf,ch2);

qVar_t<int32_t> _3 = gBroadcast<0, std::int32_t, BroadcastAction::POP>;
Fused Convolution T_glinear_conv2d_rf1[(ch2)] = math::min(math::max(cgc::fxRoundPosInf<22>

Example of auto generated Convolution code running on C

Quadric © 2025 Quadric Inc.

EMBEDDED

VISION

SUMMIT’

Custom Operator Support

* CGC Compiler Supports
Hybrid Lowering

* Automatic code generation
for whole/partial graph

v
“tvMm based
CGC compiler
// S
Vi \

e Custom Implementation of Custom Auto Generated
Operator (C++ Source (C++
nodes/subgraphs : (C++) (C+)
® e-g-, NMS, proprietary < OcmWeightsShape>
_ustomOperator(DdrInTensorShape: :ptrType ddrInPtrA,
|ayer5, custom Operators DdroutTensorShape: :ptrType ddroutPtr) { LLVM based
C++ compiler
A 4
Quadric Binary
& 11
Quadric

© 2025 Quadric Inc.

EMBEDDED

BEVDepth — The Key Component Is in CUDA VISION

SUMMIT’

Backbone

Image Feature Context Feature Mixed ONNX + CUDA Code

=y i BEVDepth is a hybrid algorithm that includes common
neural network graph constructs as well as DSP
algorithms for voxel-pooling, implemented in CUDA.

Efficient
Voxel Pooling

»
Ll

Depth Distribution

BEYV Feature
r 4

Voxel-pooling is ~“60% of the algorithmic compute cost
Depth Net

v
—/{ - How & where you run Voxel Pooling will

g SpecyRE determine overall BEVdepth performance efficiency

1) Arxiv paper on Dual QC-Ultra

Original Repo GitHub Repo
T MaldviewTiiages ‘Dépth Seperviston (Visualization Only) Prediction Results Network Config NuScene Configurations
Total Ops (G) 700
Parameters (M) 76.25
Input Size 6 X 3 x 256 x 704
N Dual Chimera Ultra Config — 64 TOPS — Inference Rate (FPS) 26.30

Quadric 2025 Quadric Inc. (with Voxel Pooling)

12

https://arxiv.org/abs/2206.10092
https://github.com/Megvii-BaseDetection/BEVDepth
https://github.com/Megvii-BaseDetection/BEVDepth/tree/main/bevdepth/exps/nuscenes/fusion
https://arxiv.org/abs/2206.10092

U —————————
EMBEDDED

BEVDepth — Simple Port from CUDA VISION

SUMMIT’

__syncthreads(); for(std::uint32_t mroildx = 0; mroildx < featuresReadFlow.numMROIs(); mroildx++) {
auto qFeatures = featuresReadFlow.read();
auto geomBuf = geomInElsFlow.template read<falsp
container::NDArray<qVar_t<std::int16_t>, 3> qGeomXYZ;
container::NDArray<qVar_t<std::uint32_t>, 3> qAddrs;

for (int i = tidy;
i < THREADS_PER_BLOCK && block_sample_idx + i < total_samples;
i += THREADS_BLOCK_Y) {
const int = geom_xyz_shared[i * 3 + 0];
const int [sample_y|= geom_xyz_shared[i * 3 + 1];
const int sample_z = geom_xyz_shared[i * 3 + 2];
if (sample_x < @ || sample_x >= num_voxel_x || sample_y < @ ||

v

ZAX -INOEIE) ONIHO 124

rau::config(geomBuf);
for(std::int32_t dim = @; dim < 3; dim++) {
qVar_t<std::int32_t> qGeomIdx = qRow<>;
qAddrs [dim] = rau::computeAddr<decltype(geomBuf)>(@, @, qGeomIdx, din
}
rau::load::tiles(qAddrs, qGeomXYZ, geomBuf);

ZAX INO39 ONIHOL34

sample_y >= num_voxel_y || sample_z < @ || sample_z >= num_voxel]
continue;
}
const int batch_idx = (block_sample_idx + i) / num_points;
for (int j = tidx; j < num_channels; j += THREADS_BLOCK_X) {

- - qVar_t<std::int16_t> qY = qGeomXYZ[1];
&output_features[(batch_idx * num_voxel_y * num_voxel_x +H)
gVar_t<std::int16_t> qZ = qGeomXYZ[2];

// make sure that if qZ is out of bounds, we do not write.

gVar_t<std::intl16_t qGeomXYZ[0];

sample_y * num_voxel_x + sample_x) *

num_channels +
qVar_t<std::int16_t> gBaseChnIdx = qZ * (OutShape::NUM_CHN + core_array::coreDim) + qCol<>;

I- eatures, qBaseChnIdx, qY, gX, JoutGrid)]

}

il
input_features[(block_sample_idx + i) * num_channels + jl);

CUDA Implementation Chimera Implementation

>

Quadric © 2025 Quadric Inc.

EMBEDDED

Custom Operator: Voxel Pooling V!USJ$2N

void voxelPooling(...) {

auto featuresReadFlow = createGeneralReadFlow (imgFeatures, ocmMemAlloc);

ExtFlow<FlowType::Read, ..> geomInElsFlow{geomXYZ, ocmMemAlloc};
for(std::uint32_t chnOffset = 0; chnOffset < numChannels; chnOffset += core_array::coreDim) {

b P rog ra m a t P E - I eve I’ a Wa re n e ss container::NDArray<qVar_t<std::int32_t>, ...> qOut = {0};

for(std::uint32_t row = 0; row < numPoints; row += mroiHeight) {
auto gFeatures = featuresReadFlow.read();

Of e nt I re P E -a rra y auto geomBuf = geomInElsFlow.template read<false>();
. . ’
y SI m I |a r to C U DA S th re a d/Wa rp ;z;j(s:gnfrﬁggze_ot%il:lkowldx = 0; mroiRowldx < numTilesPerMroi; mroiRowldx++) {

container::NDArray<qVar_t<GeomT>, 3> qGeomXYZ;
] D ata a cce SS : container::NDArray<qVar_t<std::uint32_t>, 3> gAddrs;
* Flows, with automatic double- rau::load::tiles(qAddrs, gqGeomXYZ, geomBuf);
buffering i S e 1

qVar_t<std::int16_t> qZ = qGeomXYZ[2];
qVar_t<std::int16_t> gBaseChnldx = qZ * (OutShape::NUM_CHN + core_array::coreDim) + chnOffset + qCol<>;

* Random-access
voxelAtomicAdd<OutShape>(gFeatures[mroiRowldx], gBaseChnldx, qY, gX,
qOut);
}

}
rau::config(outGrid);
qVar_t<std::uint32_t> qChnldx = chnOffset + qCol<>;
for(std::size_t i = 0; i < qOut.size(); i++) {
qVar_t<std::uint32_t> qRowldx = i / OutShape::NUM_TILES_PER_COL;
qVar_t<std::uint32_t> qColldx = (i % OutShape::NUM_TILES_PER_COL) * core_array::coreDim + qRow<>;

rau::store::oneTile(0, qChnldx, gRowldx, gqColldx, qOut[i], outGrid);
}

}
}

& 14

Quadric 2025 Quadric Inc. Key Lines of Code in Large Font

Voxel Pooling: Atomic Add

 Atomic add implemented
without atomic primitives

e All data exchanged within
PE-array

 Huge performance gain
relative to CUDA

S

Quadric © 2025 Quadric Inc.

EMBEDDED

VISION

SUMMIT’

void voxelAtomicAdd(...) {

static_assert(sizeof(InT) == 1, "Input type must be 1 byte type.");
qVar_t<std::int8_t> qValid = qArrayCore & (qColldx >= 0) & (qColldx < OcmShape::NUM_COLS) & (qRowldx >= 0) &
(qRowldx < OcmShape::NUM_ROWS) & (qBaseChnldx >= 0) &
(qBaseChnldx < OcmShape:NUM_CHN);
QVar_testd:iint8_t> qDist = std::numeric_limits<std:int8_t>z:min();
qVar_t<std::uint16_t> qChn =0;
if(avalid) {
QVar_t<std::int16_t> qLinearizedidx = qRowldx * 128+ qColldx;
qDist = qinearizedidx % core_array::coreDim - qRow<>;
qChn = qLinearizedidx / core_array::coreDim;

}

container::NDArray<qVar_testd::int8_t>, 2> qUnpacked1 = {qDist, qVal};
auto qPacked1 = qUnpacked1.template asReinterpretCast<qVar_t<std::uint16_t>, 1>();
container::NDArray<qVar_testd::uint16_t>, 2> qUnpacked = {qPacked1[0], qChn};
auto gPacked = qUnpacked.templat i ast<qVar_t _t>, 15();

qOut[qChn] += qVal * (qDist = 0);
setCleanStateForNeighborMovement<inT>(0);
qNorthSouthBcast<std::uint32_t> = qPacked[0];

#pragma unroll
for(std::int32_t move = 1; move < core_array::coreDim; move++,) {
container::NDArray<gVar_t<std::uint32_t>, 1> qPackedSouth = {h};
auto qUnpacked1South = qPackedSouth.template asReinterpretCast<qVar_t<std::uintl6_t>, 2>();
gVar_t<std::uint16_t> qChnSouth = qUnpacked1South[1];
auto qUnpackedSouth =

(qUnpacked1South.template slice<1>(0)).template asReinterpretCast<qVar_t<std::int8_t>, 2>();
gOut[gChnSouth] += gUnpackedSouth[1] * (gUnpackedSouth[0] == -move);

container::NDArray<qVar_t<std::uint32_t>, 1> gPackedNorth = {_};

auto qUnpacked1North = gPackedNorth.template asReinterpretCast<qVar_t<std::uintl6_t>, 2>();

gVar_t<std::uintl6_t> gChnNorth = gUnpacked1North[1];

auto qUnpackedNorth = (qUnpacked1North.template slice<1>(0)).template
asReinterpretCast<qgVar_t<std::int8_t>, 2>();

gOut[gChnNorth] += gUnpackedNorth[1] * (qUnpackedNorth[0] == move);

}

! 15

EMBEDDED

Combine Model + Custom Operator w/ Python VISION

=

Quadric

SUMMIT’

@chipy.ccl_custom_op(ccl_func_name="voxelPooling")
def voxel_pooling(geom_xyz, img_feats):
Add python implementation to check CCL implementation against pass

@chipy.func()
def full_model(
model_path,
imgs,
points,
ida_mats

geom_xyz, feats = chipy.infer_onnx(model_path,
ida_mats,
imgs,
points)

return voxel_pooling(geom_xyz, feats)

© 2025 Quadric Inc. 16

EMBEDDED

Voxel Pooling: Chimera Performance V!&!%N

Twice the Performance
1/8th of the Bandwidth Required
10 - 80x Lower Power*

e
. 'P quad-core DevStudio with complete

Codlng Language CUDA C++ CCL C++ Voxel Pooling source code

Clock Freq 1.4 GHz 1.4 GHz

: 41,984
AR LRIl (from 10496 shader cores) HEEIS
. 128 GB/s
Memory Bandwidth 936 GB/s (32GB per core)

Voxel Pooling Performanceists,
(1 iteration)

23 ms 11 ms

Voxel Pooling using data sizes of: [geom_xyz 6, 112, 16, 44, 3]; [img_feat 6, 112, 16, 44, 80]; [out_grid 80, 128, 128]
* RTX3090 card hosts a GA102 GPU — 8 nm process, 628 mm?2, 450 Watts (max). Voxel Pooling power difficult to measure directly on the RTX3090.
Quadric power estimates for cores only — not including system memory I/F.

Quadric © 2025 Quadric Inc.

17

https://app.quadric.io/docs/latest/chimera-software-user-guide/tutorials-model-demos/custom-op-tutorials/tutorial-voxel-pooling

Benefit of Pure Compiler Approach
Unlocking New Networks Far Faster Than Manual Porting

EMBEDDED

VISION

SUMMIT’

200 4
* Total number of demonstration networks on

175 Quadric’s online DevStudio
* Shows rapid “unlocking” of new networks
that automatically compile - purely from
source Repos without any modifications -
with successive compiler releases

150 +

=
N
(9]

100

Total Nodes

75 1

50 A

25 A

28V

X

Quadric © 2025 Quadric Inc.

18

Release Over Release Performance Upgrades

EMBEDDED

VISION

SUMMIT’

Code generation optimizations continue to unlock large performance gains, compounding over time

23.08

23.10

24.09

Up to 50%

each comparison period).
All networks auto-compiled from original FP32 source repos — no network mods, no layer changes, no manual

preparation.

Quadric

Up to 33%

Up to 42%

Up to 22%

© 2025 Quadric Inc.

Up to 76%

Up to 106%

Up to 68%

Percentages represent the largest release-over-release performance gains for existing networks (different networks

19

https://app.quadric.io/docs/2023.08.0/whats-new-8p3gcw7o#prefetching-now-released
https://app.quadric.io/docs/23.10/whats-new#summary-of-performance-for-demo-networks
https://app.quadric.io/docs/24.01/whats-new#summary-of-performance-for-demo-networks
https://app.quadric.io/docs/24.04/whats-new#summary-of-performance-for-demo-networks
https://app.quadric.io/docs/24.07/whats-new#summary-of-performance-for-demo-networks
https://app.quadric.io/docs/24.09/whats-new#summary-of-performance-for-demo-networks

EMBEDDED

CGC Compiler Maturity VISION

Memory Management Refinement SUMMIT'
40 “Required” L2 Memory needed to run RN50
2 year maturity curve from first functional
% release of CGC graph compiler to now
O
5
s 20
10 \
R Works in 1 MB
0 g
N v N a2 N N N Q Q N Q N Q Q N 3 A)
N N NN SRR A o ' & & & & o »o > = =
S A P R A A
Release
& © 2025 Quadric Inc. 20

Quadric

EMBEDDED

Conclusions VISION

SUMMIT’

* Pure Graph Compiler approach to Al / ML inference vields far better results
than manual porting / optimization

* Developer productivity = most networks “just compile” out of the box

* Compiler maturity = “free” improvements each release into the future

* C++ programmability = runs more than just “graph code”

* Programming in C++, Graph and Python code makes embedded Al inference
almost as easy as datacenter Al training & inference

=

O U Q d ri C © 2025 Quadric Inc. ”n

EMBEDDED

Resources @ EVS’25 VISION
SUMMIT’
Visit us on the web 2025 Embedded Vision Summit

https://www.quadric.io

Please visit us at Booth #821
Try Quadric DevStudio

https://studio.quadric.io/

=

Q U Q d ri C © 2025 Quadric Inc. 2

https://quadric.io/
https://studio.quadric.io/

