
ONNX and Python to C++:

State-of-the-Art Graph Compilation

Nigel Drego

Co-founder & CTO

Quadric

©2025 Quadric Inc.

About Quadric

2

Pure play Semiconductor IP Licensing
• Processor IP & Software Tools

Edge / device AI/ML Inference + DSP processing

HQ: Silicon Valley – Burlingame CA
Venture Capital funded

Mar 2021: First working silicon
May 2023: First IP delivery, DevStudio Online
Dec 2024: First multicore cluster delivery

Patents: 28+ Granted

©2025 Quadric Inc.

Chimera GPNPU Block Diagram
A Hybrid Between a CPU and a Systolic Array

3
©2025 Quadric Inc.

Quadric SDK Overview

• Chimera runs Graph Code, C++ and
Python code

• Chimera SDK runs on
user-premises or user-cloud

• Pre-packaged Docker container
version available

4
©2025 Quadric Inc.

Chimera Graph Compiler (CGC)

• Import
• Graph analysis (operator compatibility, quantization completeness, custom operator ID)
• Graph simplification / canonicalization
• Constant propagation

• Graph optimization
• Quantization scheduling (with activation range analysis)
• Graph serialization
• Fuse operators and select implementations to minimize data movement costs​

• Memory optimization
• Tensor format layout analysis (both L2 and LRM)
• Intelligent weight prefetching

5

Graph Import and
Optimizations

Successive Lowering &
Optimization Passes

Memory Usage
Optimizations

C++ using
CCL API

INT8/16
ONNX Input

©2025 Quadric Inc.

Chimera Graph Compiler - High Level Architecture

• Chimera Graph Compiler (CGC) leverages the TVM project framework

• Architecture-aware Quadric specific “middle-end”

• Injects Quadric-specific data layouts early in the lowering flow

• Hardware aware mapping Op selection

• Memory scheduling to maximize L2MEM & LRM utilization (lowers power)

• Direct control flow mapping from Relay -> C++

• Create highly optimized code for GPNPU

6

Quadric C++
Quadric

Data-layout
Assignment

Quadric
LRM/L2

Optimization

Quadric Operator
Mapping

Optimizations

TF / PyTorch /
ONNX

Relay IR

Fully customized middle & back-end in TVM

©2025 Quadric Inc.

Layout Optimization

• Transform non-NCHW formats to NCHW where possible

• Many shape transformation ops can be eliminated, even in
Multi-Head Self Attention

• Example: LayerNorm operating over channel dimension

• Solution: Analyze dimension dependencies, then sink
transpose across ops

• Can handle arbitrary sequences of shape transformation
operations

7

NCHW = Number of samples, Channels, Height, Width

©2025 Quadric Inc.

Layout Optimization

• Process graph in an edge-wise manner:

• An edge has a producing operator, i.e., Conv
and a consuming operator, i.e., ReLU

• Utilize information about op’s consumed layout(s)
and produced layout(s):

• “Layout” refers to data placement in PE-array,
not L2 or external memory

• Op can have multiple implementations:
different consumed / produced layouts

• Enumerate producer/consumer layout pairs
and select pairs with lowest cost

8

©2025 Quadric Inc.

External Memory

L2 Memory

PE-0,0

Local Register
Memory

PE-0,1

Local Register
Memory

PE-0,N-1

Local Register
Memory

. . . .
.

PE-N-1,0

Local Register
Memory

PE-N-1,1

Local Register
Memory

PE-N-1,N-1

Local Register
Memory. . . .

.

.

Deep LRM-based Fusion

• Other NPUs refer to “fusion” as keeping data on-chip

• Chimera fusion keeps data within PE’s LRM

• Element-wise ops fused by keeping in registers

• Other ops via LRM-based fusion

• Convolutions

• MHSA

• Normalizations (e.g., LayerNorm, GroupNorm, etc)

9

DDR

Fusion Example: Blog link© 2025 Quadric Inc.

Fusion in
Local Memory
(FILM)
saves power,
increases
performance

9

https://quadric.io/2023/09/13/how-to-unlock-the-power-of-operator-fusion-to-accelerate-ai/

CGC Generated Code Example
Architected to Run a Single Code Stream For Scalar, Vector & Matrix Computations

10

for (int32_t tb_y1 = 0; tb_y1 < 14; ++tb_y1) {

for (int32_t tb_x1 = 0; tb_x1 < 14; ++tb_x1) {

container::NDArray<qVar_t<int8_t>, 27> ocm_tensor_0_rf;

ocm_tensor_0_flow_1.read(ocm_tensor_0_rf);

container::NDArray<qVar_t<int8_t>, 32> T_qlinear_conv2d_rf;

BroadcastFlow<TensorAccessor<MinRoiDescriptor<OcmTensor<std::int8_t, 1, 1, 1, 1280>,... >

for (int32_t ch1 = 0; ch1 < 32; ++ch1) {

qVar_t<int32_t> _0 = nn::convTileBlockInt8<std::int32_t, 27, 1, 0, false>(ocm_tensor_0_rf);

qVar_t<int32_t> _11 = qBroadcast<0, std::int32_t, BroadcastAction::POP>;

T_qlinear_conv2d_rf[(ch1)] =
math::min(math::max(cgc::fxRoundPosInf<23>(math::fxMul<31>(math::min(math::max(math::fxMul<2>((math::min(math::max(cgc::fxRoundP
osInf<2>(math::fxMul<29>((_0 + _11), 4679030)), -128), 127)), 58507024), 0, 3.2212255e+09f, 1231605867)), -128), 127));

}

container::NDArray<qVar_t<int8_t>, 32> T_qlinear_conv2d_rf1;

for (int32_t ch2 = 0; ch2 < 32; ++ch2) {

qVar_t<int32_t> _2 = nn::groupwiseConvTileBlockInt8<std::int32_t, 1, 3, 1, 0, false>(T_qlinear_conv2d_rf,ch2);

qVar_t<int32_t> _3 = qBroadcast<0, std::int32_t, BroadcastAction::POP>;

T_qlinear_conv2d_rf1[(ch2)] = math::min(math::max(cgc::fxRoundPosInf<22>......

Scalar Variables

Flow/DMA APIs

Vector/Matrix
Variables

Fused Elementwise
Any activation can be
coded up
De-quantize math

Fused Convolution

Example of auto generated Convolution code running on Chimera
© 2025 Quadric Inc.

Custom Operator Support

• CGC Compiler Supports
Hybrid Lowering

• Automatic code generation
for whole/partial graph

• Custom Implementation of
nodes/subgraphs

• e.g., NMS, proprietary
layers, custom operators

11

Auto Generated
Source (C++)

ONNX Graph

Quadric Binary

based
CGC compiler

LLVM based
C++ compiler

Custom
Operator (C++)

© 2025 Quadric Inc.

BEVDepth – The Key Component Is in CUDA

12

Mixed ONNX + CUDA Code
BEVDepth is a hybrid algorithm that includes common
neural network graph constructs as well as DSP
algorithms for voxel-pooling, implemented in CUDA.

Voxel-pooling is ~60% of the algorithmic compute cost

 How & where you run Voxel Pooling will
determine overall BEVdepth performance efficiency

BEVDepth on Dual QC-Ultra

Original Repo GitHub Repo

Network Config NuScene Configurations

Total Ops (G) 700

Parameters (M) 76.25

Input Size 6 x 3 x 256 x 704

Inference Rate (FPS)
(with Voxel Pooling)

26.30© 2025 Quadric Inc.

Arxiv paper

Dual Chimera Ultra Config – 64 TOPS
12

https://arxiv.org/abs/2206.10092
https://github.com/Megvii-BaseDetection/BEVDepth
https://github.com/Megvii-BaseDetection/BEVDepth/tree/main/bevdepth/exps/nuscenes/fusion
https://arxiv.org/abs/2206.10092

BEVDepth – Simple Port from CUDA

13

CUDA Implementation Chimera Implementation

© 2025 Quadric Inc.

Custom Operator: Voxel Pooling

• Program at PE-level, awareness
of entire PE-array

• Similar to CUDA’s thread/warp

• Data access:
• Flows, with automatic double-

buffering
• Random-access

14
© 2025 Quadric Inc.

void voxelPooling(…) {
…

auto featuresReadFlow = createGeneralReadFlow (imgFeatures, ocmMemAlloc);
ExtFlow<FlowType::Read, ..> geomInElsFlow{geomXYZ, ocmMemAlloc};

for(std::uint32_t chnOffset = 0; chnOffset < numChannels; chnOffset += core_array::coreDim) {
container::NDArray<qVar_t<std::int32_t>, …> qOut = {0};
for(std::uint32_t row = 0; row < numPoints; row += mroiHeight) {

auto qFeatures = featuresReadFlow.read();
auto geomBuf = geomInElsFlow.template read<false>();

rau::config(geomBuf);
for(std::int32_t mroiRowIdx = 0; mroiRowIdx < numTilesPerMroi; mroiRowIdx++) {
container::NDArray<qVar_t<GeomT>, 3> qGeomXYZ;
container::NDArray<qVar_t<std::uint32_t>, 3> qAddrs;

…

rau::load::tiles(qAddrs, qGeomXYZ, geomBuf);
qVar_t<std::int16_t> qX = qGeomXYZ[0];

qVar_t<std::int16_t> qY = qGeomXYZ[1];
qVar_t<std::int16_t> qZ = qGeomXYZ[2];
qVar_t<std::int16_t> qBaseChnIdx = qZ * (OutShape::NUM_CHN + core_array::coreDim) + chnOffset + qCol<>;

voxelAtomicAdd<OutShape>(qFeatures[mroiRowIdx], qBaseChnIdx, qY, qX,
qOut);

}
}
rau::config(outGrid);
qVar_t<std::uint32_t> qChnIdx = chnOffset + qCol<>;
for(std::size_t i = 0; i < qOut.size(); i++) {

qVar_t<std::uint32_t> qRowIdx = i / OutShape::NUM_TILES_PER_COL;
qVar_t<std::uint32_t> qColIdx = (i % OutShape::NUM_TILES_PER_COL) * core_array::coreDim + qRow<>;

rau::store::oneTile(0, qChnIdx, qRowIdx, qColIdx, qOut[i], outGrid);
}

}
}

Key Lines of Code in Large Font

Voxel Pooling: Atomic Add

• Atomic add implemented
without atomic primitives

• All data exchanged within
PE-array

• Huge performance gain
relative to CUDA

15

void voxelAtomicAdd(…) {
static_assert(sizeof(InT) == 1, "Input type must be 1 byte type.");
qVar_t<std::int8_t> qValid = qArrayCore & (qColIdx >= 0) & (qColIdx < OcmShape::NUM_COLS) & (qRowIdx >= 0) &

(qRowIdx < OcmShape::NUM_ROWS) & (qBaseChnIdx >= 0) &
(qBaseChnIdx < OcmShape::NUM_CHN);

qVar_t<std::int8_t> qDist = std::numeric_limits<std::int8_t>::min();
qVar_t<std::uint16_t> qChn = 0;
if(qValid) {
qVar_t<std::int16_t> qLinearizedIdx = qRowIdx * 128 + qColIdx;
qDist = qLinearizedIdx % core_array::coreDim - qRow<>;
qChn = qLinearizedIdx / core_array::coreDim;

}

container::NDArray<qVar_t<std::int8_t>, 2> qUnpacked1 = {qDist, qVal};
auto qPacked1 = qUnpacked1.template asReinterpretCast<qVar_t<std::uint16_t>, 1>();
container::NDArray<qVar_t<std::uint16_t>, 2> qUnpacked = {qPacked1[0], qChn};
auto qPacked = qUnpacked.template asReinterpretCast<qVar_t<std::uint32_t>, 1>();

qOut[qChn] += qVal * (qDist == 0);
setCleanStateForNeighborMovement<InT>(0);

qNorthSouthBcast<std::uint32_t> = qPacked[0];

#pragma unroll

for(std::int32_t move = 1; move < core_array::coreDim; move++, rot180()) {
container::NDArray<qVar_t<std::uint32_t>, 1> qPackedSouth = {qSouth<std::uint32_t>};
auto qUnpacked1South = qPackedSouth.template asReinterpretCast<qVar_t<std::uint16_t>, 2>();
qVar_t<std::uint16_t> qChnSouth = qUnpacked1South[1];
auto qUnpackedSouth =
(qUnpacked1South.template slice<1>(0)).template asReinterpretCast<qVar_t<std::int8_t>, 2>();

qOut[qChnSouth] += qUnpackedSouth[1] * (qUnpackedSouth[0] == -move);

container::NDArray<qVar_t<std::uint32_t>, 1> qPackedNorth = {qNorth<std::uint32_t>};
auto qUnpacked1North = qPackedNorth.template asReinterpretCast<qVar_t<std::uint16_t>, 2>();
qVar_t<std::uint16_t> qChnNorth = qUnpacked1North[1];
auto qUnpackedNorth = (qUnpacked1North.template slice<1>(0)).template

asReinterpretCast<qVar_t<std::int8_t>, 2>();
qOut[qChnNorth] += qUnpackedNorth[1] * (qUnpackedNorth[0] == move);

}
}

© 2025 Quadric Inc.

Combine Model + Custom Operator w/ Python

@chipy.ccl_custom_op(ccl_func_name="voxelPooling")
def voxel_pooling(geom_xyz, img_feats):
Add python implementation to check CCL implementation against pass

@chipy.func()
def full_model(

model_path,
imgs,
points,
ida_mats

):
geom_xyz, feats = chipy.infer_onnx(model_path,

ida_mats,
imgs,
points)

return voxel_pooling(geom_xyz, feats)

16© 2025 Quadric Inc.

Voxel Pooling: Chimera Performance

Twice the Performance
1/8th of the Bandwidth Required

10 - 80x Lower Power*

17

Nvidia RTX 3090
(Full Chip)

Quadric QC-Ultra
(quad-core IP)

Coding Language CUDA C++ CCL C++

Clock Freq 1.4 GHz 1.4 GHz

ALU Capacity (ALU Count)
41,984

(from 10496 shader cores)
4096

Memory Bandwidth 936 GB/s
128 GB/s

(32GB per core)

Voxel Pooling Performance 
(1 iteration)

23 ms 11 ms

Voxel Pooling using data sizes of: [geom_xyz: 6, 112, 16, 44, 3]; [img_feat: 6, 112, 16, 44, 80]; [out_grid: 80, 128, 128]
* RTX3090 card hosts a GA102 GPU – 8 nm process, 628 mm2, 450 Watts (max). Voxel Pooling power difficult to measure directly on the RTX3090.
Quadric power estimates for cores only – not including system memory I/F.

Full Detailed Tutorial on
DevStudio with complete
Voxel Pooling source code

© 2025 Quadric Inc.

https://app.quadric.io/docs/latest/chimera-software-user-guide/tutorials-model-demos/custom-op-tutorials/tutorial-voxel-pooling

Benefit of Pure Compiler Approach
Unlocking New Networks Far Faster Than Manual Porting

18

• Total number of demonstration networks on
Quadric’s online DevStudio

• Shows rapid “unlocking” of new networks
that automatically compile - purely from
source Repos without any modifications -
with successive compiler releases

© 2025 Quadric Inc.

Release Over Release Performance Upgrades

Code generation optimizations continue to unlock large performance gains, compounding over time

19

Up to 50%

23.08

Up to 33%

23.10

Up to 42%

24.01

Up to 22%

24.04

Up to 76%

24.07

Up to 106%

24.09

Up to 68%

24.12

• Percentages represent the largest release-over-release performance gains for existing networks (different networks
each comparison period).

• All networks auto-compiled from original FP32 source repos – no network mods, no layer changes, no manual
preparation.

© 2025 Quadric Inc.

https://app.quadric.io/docs/2023.08.0/whats-new-8p3gcw7o#prefetching-now-released
https://app.quadric.io/docs/23.10/whats-new#summary-of-performance-for-demo-networks
https://app.quadric.io/docs/24.01/whats-new#summary-of-performance-for-demo-networks
https://app.quadric.io/docs/24.04/whats-new#summary-of-performance-for-demo-networks
https://app.quadric.io/docs/24.07/whats-new#summary-of-performance-for-demo-networks
https://app.quadric.io/docs/24.09/whats-new#summary-of-performance-for-demo-networks

CGC Compiler Maturity
Memory Management Refinement

20

M
B

yt
e

s

2 year maturity curve from first functional
release of CGC graph compiler to now

Works in 1 MB

“Required” L2 Memory needed to run RN50

© 2025 Quadric Inc.

© 2025 Quadric Inc.

Conclusions

• Pure Graph Compiler approach to AI / ML inference yields far better results
than manual porting / optimization

• Developer productivity most networks “just compile” out of the box

• Compiler maturity  “free” improvements each release into the future

• C++ programmability  runs more than just “graph code”

• Programming in C++, Graph and Python code makes embedded AI inference
almost as easy as datacenter AI training & inference

21

Visit us on the web

https://www.quadric.io

Try Quadric DevStudio

https://studio.quadric.io/

2025 Embedded Vision Summit

Please visit us at Booth #821

22

Resources @ EVS’25

© 2025 Quadric Inc.

https://quadric.io/
https://studio.quadric.io/

Thank You

23

