
Rapid Development of AI-Powered
Embedded Vision Solutions—
Without a Team of Experts

Marcel Wouters

Senior Back-end Engineer

Network Optix

© 2025 Network Optix

YOLOv8 Model to Visualisation

2

Installable components:

• Linux Server

• MetaVMS Server

• AI plugin

• MetaVMS Client

© 2025 Network Optix

Components

3

Custom components:

• Development postprocessor

• Data capture with Python script

• Data visualisation with chart.js

Custom Component – Data Capturing

4

Output
Converted
to MsgPack

Unpack
MsgPack

Image
From Cam

Model
Runs

Process
Data

Write to
<file>

© 2025 Network Optix

• Per server only 1 postprocessor per type is started

• Unix domain sockets are used for communication

• Data is encoded in MsgPack format

• Next inference will wait for postprocessor to finish

• Option to receive raw input data

• Option to send updated model output data back

© 2025 Network Optix

Postprocessors

5

• Can be found in the integration-sdk repository “postprocessor-

broadcast-server” (soon)

• Convert MsgPack input to JSON

• Easy connect to using TCP

• Allows for many readers

• Cannot read image data nor send data back

© 2025 Network Optix

Development Postprocessor

6

© 2025 Network Optix

Installing postprocessor-broadcast-server

7

$ git clone https://github.com/scailable/sclbl-integration-sdk.git

Cloning into 'sclbl-integration-sdk'…

$ cd sclbl-integration-sdk/postprocessor-broadcast-server

$ # follow instructions for building and installation

{ “Name":"PostProcessor Broadcast Server",

“Command”:”/opt/…/postprocessor-broadcast-server”,

“SocketPath”:"/tmp/postprocessor-broadcast-server.sock",

"ReceiveInputTensor": false,

"ReceiveBinaryData": false,

"NoResponse": true }

https://github.com/scailable/sclbl-integration-sdk.git

© 2025 Network Optix

Configure a Pipeline in the AI Cloud

8

© 2025 Network Optix

Broadcast Server Output

9

$ nc localhost 7100
{“DeviceID":"740aef91-d1b0-b2a8-6f5a-e6f716599757",
“DeviceName”:"Demo Camera”, “Timestamp”: 2025-05-
06T16:55:58.768+02:00”,"Width":1920,"Height":1080,
"IndexIndex":0,"Counts":null, “BBoxes_xyxy":{"bench":[[770.89484,
508.4393,1006.5688,588.6948]]},”ObjectsMetaData":null,
"Scores":null}

{"DeviceID":"740aef91-d1b0-b2a8-6f5a-e6f716599757",
"DeviceName":"Demo Camera", "Timestamp": "2025-05-
06T16:55:58.888+02:00","Width":1920,"Height":1080,
"IndexIndex":0,"Counts":null, "BBoxes_xyxy":{"vase":[[1436.2456,
736.65295,1498.6831,818.2757]]},”ObjectsMetaData":null,
"Scores":null}

…continues like this…

{
"DeviceID": "740aef91-d1b0-b2a8-6f5a-…",
"DeviceName": "Demo Camera",
"Width":1920,
"Height":1080,
"Timestamp": "2025-05-06T16:55:54.755+02:00",
"BBoxes_xyxy": {

"mouse": [[
1435.3203, 735.72766, 1497.7578, 817.35034

]]
}

}

© 2025 Network Optix

Capturing Data for Visualisation

10

ANIMALS = ['bird', 'cat', 'dog', 'bear', 'cow']

def process_message(json_obj: dict) -> None:

timestamp = strptime(json_obj['Timestamp'][:18], '%Y-%m-%dT%H:%M:%S')

json_line = {}

if 'BBoxes_xyxy' in json_obj:

for animal in ANIMALS:

if animal in json_obj['BBoxes_xyxy']:

json_line[animal] = len(json_obj['BBoxes_xyxy'][animal])

if len(json_line) > 0:

json_line['timestamp'] = timestamp.strftime('%Y-%m-%dT%H:%M:%S.%f')

line = json.dumps(json_line)

with open('/tmp/detections.jsonl', 'a') as f:

f.write(line + '\n')

© 2025 Network Optix

Broadcast Server Loop

11

Regular invocation

if __name__ == "__main__":

processor = TCPJsonLineProcessor(host='localhost', port=7100)

try:

processor.connect()

processor.process_stream(process_message)

except KeyboardInterrupt:

print("Stopping...")

finally:

processor.close()

© 2025 Network Optix

Regular Python Postprocessor Loop

12

def main():

...

while True:

try:

input_message, _ = communication_utils.waitForSocketMessage(server)

except socket.timeout:

continue

Parse input message

input_object = communication_utils.parseInferenceResults(input_message)

Process the message

process_message(input_object)

© 2025 Network Optix

Custom Component – Data Visualisation

13

File
webserver

BrowserHTML/JS

Read <file>
Update

visualisation

© 2025 Network Optix

HTML

14

<html>

<head>

<script src="https://cdn.jsdelivr.net/npm/chart.js"></script>

<script src="https://cdn.jsdelivr.net/npm/luxon@3"></script>

<script src=“https://cdn.jsdelivr.net/npm/chartjs-adapter-luxon@1"></script>

<script>

// code here

</script>

</head>

<body>

<canvas id="graph"></canvas>

</body>

</html>

© 2025 Network Optix

Javascript

15

// detections.jsonl:

// {"bird": 1, "timestamp": "2025-04-28T21:24:05.000000"}

// {“cat": 1, "timestamp": "2025-04-28T21:24:15.000000"}

const response = await fetch(‘detections.jsonl');

const text = await response.text();

const lines = text.split('\n');

// parse JSONL lines and aggregate into whole minutes

const detections = parseAndAggregateLines(lines);

for (const detection of detections) {

await updateChartDataWithDetection(data, detection);

}

© 2025 Network Optix

Data Visualisation Result

16

• Fast and easy iteration with our setup

• Engineer workarounds or retrain model

• Maintaining hardware resources is not my thing

• My cats are either really scary and/or really big

© 2025 Network Optix

To Recap

17

© 2025 Network Optix

Developer resources

https://meta.nxvms.com/

Integration SDK repository

https://github.com/scailable/sclbl-
integration-sdk

AI cloud (need Nx account)

https://admin.sclbl.nxvms.com/

2025 Embedded Vision Summit

Visit Network Optix at booth 302

Suggestion for next talk:

“OAAX: One Standard for AI Vision on
Any Compute Platform”
Robin van Emden, Thursday, 11:25 am

18

Resources

https://meta.nxvms.com/
https://github.com/scailable/sclbl-integration-sdk
https://admin.sclbl.nxvms.com/

