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About BrainChip – Founded 2013

Design & license machine learning accelerators for ultra low-power AI

Business Model: IP Licensing 

15+ years of AI architecture research & technologies

65+ data science, hardware & software engineers

Publicly traded Australian Stock Exchange (BRN:ASX)
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Goals of This Presentation

• Analysis of computation and bandwidth in state-space models and transformers

• Establish energy and costs savings measures that are available ONLY to SSM

• Efficient off-line processing of context information

• Use of read only memory, e.g., flash to dramatically reduce power

• Conclusion
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Problem Statement
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• Goal: 
• Achieve < 0.5 W system power 
• Sub-100 ms latency for edge AI such as RAG 
• Low SRAM < 1 MB and SoTA performance

• Why?  Unlocks new cost and power sensitive markets

• Key challenges:
• Transformer based LLMs dominate today
• Transformers KV cache expands blows up chip cache
• RAG uses long context length (> 1024 tokens)

• Opportunity:
• State-Space Models address power, size issues



State-Space Model Overview (1/2)

• State-Space refers to time-domain model of 
coupled linear difference equations used to 
model physical systems. 

• x is the state of the system

• u is the input. For LLM, a real vector 1k-4k long

• A is a diagonal matrix. It is stable, acts as a low pass 
filter, with oscillations.   x=Ax are decoupled filters

• Bu drives this filter. B is a mixing term

• C reads out the state

• This part is a generic State-Space Model
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State-Space Model Overview (2/2)

• Innovation in SSMs: F is a non-linearity, e.g., SiLU, ReLU

• Relation to neural networks

• B matrix is a set of input weights to individual neurons

• A gives the neurons dynamics,  similar to RNNs

• Difference with RNNs

• Because of the regular structure, this RNN can be 
converted to CNN for fast training on GPUs!

• Recurrent inference, small, efficient
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Training  

• Can train SSM as convolutional networks exploiting parallelism in 
GPUs

• Distillation pathway from transformers to state space model 

• Distillation is a popular way of training smaller LLMs

• Start with large LLM an use it as a teacher for the small SMM. 

• Cross-architecture distillations for transformers -> State-Space 
Models are being developed (Mohawk)
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State-Space Model Cache Is Tiny

• Memory requirements, BrainChip TENNs LLM 1B 
parameters

• State size includes:

• States per layer: 4K

• Word size : 2 Bytes

• N Layers : 24

• Calculation for 1B parameter model:

• State size = 4K*2*24* = 393 KB
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State-Space Machine Are Markov

• Given an SSM, the current state is conditionally 
independent of the past: 

• Implications for Retrieval Augmented Generation 

• “Chunks” of text are retrieved for processing. 

• With SSMs, preprocess the entire chunk and 
store in hidden state

• Can then “seed” state-machine.

• Computation cost is ~0 for any context length 
size!
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Retrieve Pre-Processed Hidden State
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Retrieve Full Text



State-Space Models: Hardware Benefit

• Memory transfers can be Read Only

• DDR is not needed. Minimum DDR confirmation are ~2 watts and above

• Flash brings us below < 0.5 watts active. Plus no leakage

• Compute is constant 

• At 20 tokens/sec, for a 1B model requires ~ 20 GMACs. Using 1 pJ/MAC, energy for LLM is ~20 
milliwatts.

• Bandwidth  < 5-10 GB/Sec, 

• Time to first token < 100 ms for RAG do to caching
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How Do Transformers Compare? 

• Memory

• In a 1B model, i.e., Llama 3.2 1B must cache Key and Value terms for all layers.

• 1K tokens requires an overwhelming 50 MB of cache; 50 MB > 1 MB 
Compute: Attention head grows in compute and size a N^2.

• Memory bandwidth: Must cache KV on DRAM. IO bandwidth begins to be 
dominated by KV read/writes for long context.

• DDR means higher minimum floor;  > 2 watts 

• Compute of 1K input context requires trillions of macs.

• High compute means large energy costs.

©2025 BrainChip Inc. 11



Transformers versus SSM
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Aspect Transformers SSM

Research Activity Intense optimization efforts Growing interest. Fewer 
optimization techniques

Lossy Compression Full context retention Hidden state acts as lossy 
bottleneck

Computational Complexity O(N^2) (very poor) O(N)

Inference Speed Slower Much faster

Die Area (cost) Very high Very low

Flash Compatible vs. DRAM No Yes

Precompute Offline No Yes



BrainChip TENNs 1B versus Transformer 1B

TENNs 1B Llama 3.2 1B Comment

Perplexity, lower is better 6.3 13.7 (base) SMM shows strong possibilities for 
RAG applications

Teraflops 1024 context tokens 
(RAG application)

0 2.5 Offline compute is great benefit 

Teraflops additional 100 query 
tokens

0.1 0.25

MMLU 40 49 Transformers excel for certain tasks

Write bandwidth KV cache 0 156 MB  Large on-chip memory or 
external DRAM

Read bandwidth KV cache 0 95 GB Latency reduced w/ slow mem
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Summary

• State-Space Models are a viable alternative for LLM at the extreme edge

• SMM requires small cache, read-only memory at low bandwidth and low compute 
intensity. 

• Total power for a 1B design comes in under 0.5 watts for both Flash access and 
compute

• Transformers cannot meet ultra-low power requirements today, due to the following:

• Transformers require large cache, read-write memory and off board DDR 

• Transformers require high compute with many TOPS with many mac units, driving up 
cost, power, and heat generation
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What Are the Drawbacks of State-Space Models?

• Our models have better performance on metrics like perplexity versus public domain 
Transformer models.

• Yet, some tasks like copying, and in context learning remain difficult for SSM.

• Transformers are the subject of intense research, with new efficiencies every day.

• The main strength and weakness of SSM is their Markov property. 
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Resources

• State-Space Models: https://en.wikipedia.org/wiki/State-space_representation

• Mohawk: https://goombalab.github.io/blog/2024/distillation-part1-mohawk/

• Transformer Compute Requirements: Kaplan et al., https://arxiv.org/pdf/2001.08361
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Thank You

See our demonstration in booth # 716


