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About BrainChip — Founded 2013

Design & license machine learning accelerators for ultra low-power Al
Business Model: [P Licensing
[a+ years of Al architecture research & technologies

Go+ data science, hardware & software engineers

Publicly traded Australian Stock Exchange (BRN:ASX)
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Goals of This Presentation VISION

SUMMIT’

* Analysis of computation and bandwidth in state-space models and transformers

* Establish energy and costs savings measures that are available ONLY to SSM
* Efficient off-line processing of context information
* Use of read only memory, e.g., flash to dramatically reduce power

* Conclusion
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Problem Statement VISION
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Goal:

* Achieve < 0.5 W system power
*  Sub-100 ms latency for edge Al such as RAG
* Low SRAM < 1 MB and SoTA performance

Why? Unlocks new cost and power sensitive markets

Key challenges:

* Transformer based LLMs dominate today

* Transformers KV cache expands blows up chip cache
* RAG uses long context length (> 1024 tokens)

Opportunity:

» State-Space Models address power, size issues
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State-Space Model Overview (1/2) VISION
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, , State-Space Model
* State-Space refers to time-domain model of

coupled linear difference equations used to
model physical systems.

Layer 1

Lo&erN

e X is the state of the system

e uis the input. For LLM, a real vector 1k-4k long

* Ais a diagonal matrix. It is stable, acts as a low pass .
filter, with oscillations. x=Ax are decoupled filters

: . : . () — ADyD) 4 B gD
* Bu drives this filter. B is a mixing term Xir1=ATX + BTug

* Creads out the state vy =cOx?  +pOy?

* This part is a generic State-Space Model v

Up i1 —F(Vglrl)
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State-Space Model Overview (2/2) V!USJ'QN
* Innovation in SSMs: F is a non-linearity, e.g., SiLU, ReLU State-Space Model
* Relation to neural networks Layer |

* B matrix is a set of input weights to individual neurons

* A gives the neurons dynamics, similar to RNNs
 Difference with RNNs

* Because of the regular structure, this RNN can be
converted to CNN for fast training on GPUs!

. . . (12— (£) (£)

* Recurrent inference, small, efficient Xy 1 =A% +BYuy
(£)  _ ~)D) £)y4(0)

Yir1=CY%% ; +DWuy

ul =Flyick)
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Training VISION
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e (Can train SSM as convolutional networks exploiting parallelism in
GPUs

e Distillation pathway from transformers to state space model
* Distillation is a popular way of training smaller LLMs

 Start with large LLM an use it as a teacher for the small SMM.

» Cross-architecture distillations for transformers -> State-Space
Models are being developed (Mohawk)

brainchip™ |
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State-Space Model Cache Is Tiny VISION
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* Memory requirements, BrainChip TENNs LLM 1B Siaie-Space Model

param eters Layer 1

e State size includes: I

 States per layer: 4K

* Word size : 2 Bytes

* N Layers: 24
 Calculation for 1B parameter model:
« State size = 4K*2*24* = 393 KB Xicr1=ADx + BYuy

(£)  _ ~)D) (£)44(£)
Yir1=C"xy 1+ DYy

ul =Flyick)
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State-Space Machine Are Markov

e Given an SSM, the current state is conditionally
independent of the past:

p(mt | mo:t—l) = P(mt | -’Et—l)-
* Implications for Retrieval Augmented Generation

* “Chunks” of text are retrieved for processing.

Query
——
——cc3
Le——

Query
Encoding
S

—=

—_—

————
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* With SSMs, preprocess the entire chunk and
store in hidden state

A
Generation

Vector
Store
="
ey RS
——>

Output

I — |
|
 E— —
| Ev— |

* Can then “seed” state-machine.

e Computation cost is ~0 for any context length

brainchip®
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Retrieve Full Text

Retrieve Pre-Processed Hidden State
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State-Space Models: Hardware Benefit VISION
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 Memory transfers can be Read Only

e DDR is not heeded. Minimum DDR confirmation are ~2 watts and above

* Flash brings us below < 0.5 watts active. Plus no leakage

* Compute is constant

* At 20 tokens/sec, for a 1B model requires ~ 20 GMACs. Using 1 pJ/MAC, energy for LLM is ~20
milliwatts.

e Bandwidth < 5-10 GB/Sec,

* [Time to first token < 100 ms for RAG do to caching

brainchip™ .
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How Do Transformers Compare? V!USJ'QN

* Memory
* Ina 1B model, i.e., Llama 3.2 1B must cache Key and Value terms for all layers.

* 1K tokens requires an overwhelming 50 MB of cache;|50 MB > 1 MB
Compute: Attention head grows in compute and size a N*2.

* Memory bandwidth: Must cache KV on DRAM. IO bandwidth begins to be
dominated by KV read/writes for long context.

* DDR means higher minimum floor;|> 2 watts

* Compute of 1K input context requires trillions of macs.

» High compute means large energy costs.
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Transformers versus SSM

Research Activity
Lossy Compression

Computational Complexity

Inference Speed

Die Area (cost)
Flash Compatible vs. DRAM

Precompute Offline

brainchip®

Intense optimization efforts

Full context retention

O(N~2) (very poor)

Slower

Very high
No

No
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Growing interest. Fewer
optimization techniques

Hidden state acts as lossy
bottleneck

O(N)

Much faster

Very low

Yes

Yes
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BrainChip TENNs 1B versus Transformer 1B

TENNSs 1B Llama 3.2 1B
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Perplexity, lower is better

Teraflops 1024 context tokens
(RAG application)

Teraflops additional 100 query
tokens

MMLU

Write bandwidth KV cache

Read bandwidth KV cache

brainchip®

SMM shows strong possibilities for
RAG applications

6.3 13.7 (base)
0 2.5

0.1 0.25

40 49

0 156 MB

0 95 GB
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Offline compute is great benefit

Transformers excel for certain tasks

=>» Large on-chip memory or
external DRAM

Latency reduced w/ slow mem
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Summary VISION
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» State-Space Models are a viable alternative for LLM at the extreme edge

* SMM requires small cache, read-only memory at low bandwidth and low compute
intensity.

» Total power for a 1B design comes in under 0.5 watts for both Flash access and
compute

* Transformers cannot meet ultra-low power requirements today, due to the following:
* Transformers require large cache, read-write memory and off board DDR

* Transformers require high compute with many TOPS with many mac units, driving up
cost, power, and heat generation

brainchip™ .
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What Are the Drawbacks of State-Space Models? VISION
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* Our models have better performance on metrics like perplexity versus public domain
Transformer models.

* Yet, some tasks like copying, and in context learning remain difficult for SSM.
* Transformers are the subject of intense research, with new efficiencies every day.

* The main strength and weakness of SSM is their Markov property.

brainchip™ .
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Resources VISION
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» State-Space Models: https://en.wikipedia.org/wiki/State-space_representation

 Mohawk: https://goombalab.github.io/blog/2024/distillation-partl-mohawk/

* Transformer Compute Requirements: Kaplan et al., https://arxiv.org/pdf/2001.08361
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Thank You

See our demonstration in booth # 716
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