2025
EMBEDDED

SUMMIT

Running Accelerated CNNs on
Low-Power Microcontrollers
Using Arm Ethos-U55,
TensorFlow and Numpy

Kwabena W. Agyeman
President
OpenMYV, LLC

EMBEDDED

What is OpenMV? VISION

SUMMIT’

e Maker of the OpenMV Cam

* A low-power computer vision platform
Over 100K

* Directly integrate into products Sold &
Licensed

* Or licensable for being remixed

* What we do:
 Electrical and PCB design, manufacturing
* High-performance firmware programming
* Camera drivers, DMA, cache coherency, etc.

* SIMD computer vision algorithms, etc.

© 2025 OpenMV, LLC 2

EMBEDDED

We make it easy to build a product VISION

SUMMIT

Your application
“¥penMV provide

Vector (SIMD)
accelerated vision

algorithms

L&y [\J{ ' AALIF SONY $FLIR P67/
. ISR o | 4 1) I </

:{ENESAS 2 Himeax (infineon RISC

MicroPython

'@ PROPHESEE

N
q& p en Mv © 2025 OpenMV, LLC 3

EMBEDDED

Outline VISION

SUMMIT’

* Market background — what’s happening with MCUs?
* Introduce the OpenMV Cam N6 and OpenMV AE3.
* Run ML workloads on microcontrollers using Numpy and TensorFlow.

e Multi-core low-power ML processing using MicroPython.

ay,
%

penMV 4

EMBEDDED

New Al microcontrollers are here VISION
SUMMIT
» Before: * Now:
* 600 MHz M7 CPU * 400 MHz M55 CPU
e ~1.2 INT8 GOPS ML performance e ~204 INT8 GOPS ML performance
* ~1 MB RAM on chip e ~13 MB RAM on chip
e ~1.2 GB/s bandwidth * ~3.2 GB/s bandwidth
* ~66 MBs FLASH access e ~200 MBs FLASH access
* No MIPI CSI, ISP, NPU e MIPI CSI, Helium-ISP, NPU

Run 224x224 YOLOv5 Nano
at 0.4 FPS @ 0.8 W

Runs 224x224 YOLOv5 Nano

> 200x Better at 28 FPS @ ~0.25 W

N
qs p en Mv © 2025 OpenMV, LLC >

The market wave

* Running ~2-4 MB YOLO nano models at
30 FPS for <1 W is now possible.

e Or ~8-10 MB YOLO small models
at 10 FPS for<1 W.

* With deep sleep power < 1 mW

* For years of application battery Life

* Vision Al for everything, everywhere

S
qspenMV

MV, LLC

EMBEDDED

VISION

SUMMIT’

EMBEDDED

Introducing the OpenMV AE3 VISION

SUMMIT’

* 400 MHz SIMD CPU
* 204 GOPS NPU
* 13 MB RAM
* 32 MB FLASH
* 1 MP color global shutter
* 30 FPS, 120 FPS @ VGA
* w/ mic, ToF, accel, gyro
* USB, WiFi, BLE
* GPIO: I12C, SPI, CAN, PWM
* Full power: 60 mA @ 5V (0.25 W)
* Deepsleep: 500 uA @ 5V (2.5 mW)

N
q‘b p en Mv © 2025 OpenMV, LLC 7

And say hello to the OpenMV-N6

IMU and
user button

Mic and user
RGB LED

2.4 GHz WiFi
BLE V5.2

10/100/1000
ethernet

32 MB FLASH
@ 400 MB/s

3.7V LIPO
charger

© 2025 OpenMV, LLC

EMBEDDED

VISION

SUMMIT’

1MP 120 FPS

global shutter 800 MHz

color camera SIMD
CPU

STM32N6

MCU

UHS-I uSD card
socket
(behind camera)

JTAG &
SWD

64 MB RAM
@ 800 MB/s

USB HS
480 Mb/s

Full Power: 150 mA @ 5 V (0.75 W)
Deepsleep: 1 mA @ 5V (5 mW)

NPU Accelerated TensorFlow +
NumPy Onboard =
Vector Accelerated Python Processing

There are a lot of models

®) YOLOv8

YOLOvV8 is a stats

segmentation m¢

of YOLOVS. .5 YOLOvV7
OBJECT DETECTION YOLOV7 is a state of the art

© + 210ks stars OBJECTDETECTION DEPLOYW

© + 13.0k+ stars

<5 YOLO-W
YOLO-World is a 52 YOLOV10

YOLOV10 is a real-time objec

OBJECT DETECTION
in the paper "YOLOV10: Real
Detection”.

© * 2.9k« stars = | OBJECT DETECTION

®9 YOLO11

YOLO11is a com|
object detection,

. YOLOv3 Keras

OBJECT DETECTION Though it is no longer the m(
algorithm, YOLO v3 is still a\
need real-time detection wh
accuracy. Keras implementat

(v})000 stars

OBJECT DETECTION

P— O 7t
TE—

q
“fpenMVv

b YOLOvV9

51 YOLOX

EH YOLO-NAS

YOLO-NAS is an object detection model developed by
Deci that achieves SOTA performances compared to
YOLOVS, v7, and v8.

OBJECT DETECTION

52 YOLOR

YOLOR (You Only Learn One Representation) is an object
detection model that uses both implicit and explicit
knowledge to make predictions.

OBJECT DETECTION

Zkcs stars « GPL-3.0 license = Released May 10, 2021

®P YOLOvS5 Oriented Bounding Boxes

YOLOv5-0BB is a variant of YOLOv5 that supports
oriented bounding boxes. This model is designed to yield
predictions that better fit objects that are positioned at an
angle.

OBJECT DETECTION

YOLOv4 PyTorch

YOLOvA has emerged as the best real time object

ion model. YOLOv4 carries forward many of the
s of the YOLO family of m
with new modeling and data augmentation techniques
This implementation is in PyTorch.

dete

‘esearch contribu

Is along

OBJECT BETECTION

Q- Adks

-». Scaled YOLOv4

Scaled YOLOv4 is an extension of the YOLOvA research
mplemented in the YOLOvS PyTorch framework

OBJECT DETECTION

© - 2k stars « GPL-30 license

= YOLOS

YOLOS looks at patches of an image to to form “patch
tokens®, which are used in place of the traditional

wordpiece tokens in NLP.

OBJECT DETECTION

© 2025 OpenMV, LLC

EMBEDDED

VISION

SUMMIT

The Problem
So many vision models!
How can you quickly support one?
Quantized models may need
tweaking too, custom output

modifications and more!

How to handle this?

10

EMBEDDED

NPU accelerated TensorFlow lite for microcontrollers VISION

Reference the YOLO V5 model from ROM to XIP.
model = ml.Model("/rom/yolo_v5_224_nano.tflite")

YOLO V5 tensor post-processing class.
v5 = yolo_v5_postprocess()

Take a picture.
img = sensor.snapshot()

Detect objects in the image using the YOLO V5 model.
boxes = model.predict([img], callback=v5)

Accepts a list of Tensors and outputs a list

of Tensors for multi-modal inference

‘ “ p en Mv © 2025 OpenMV, LLC

SUMMIT

OpenMV ML Framework

Load a model reference to execute
in place from FLASH by the NPU.

Create a post-processing object
which will receive the tensor
output from the model.

Run inference using the NPU on

image objects and post-process
them in Python with Numpy.

11

EMBEDDED

Post-process with Numpy on Micropython (1/2) VISION

class yolo_v5_postprocess:

Uk W= e

def

def

O = < x

score
class

__init__(self, threshold=0.4):
self.threshold = threshold

__call__(self, model, inputs, outputs):

oh, ow = model.output_shape[0®] # (3087, 6) ~= T72KB of float32s

Threshold all rows at the same time

score_indices = np.nonzero(outputs[:, 4] >

if not len(score_indices):
return []

Get the bounding boxes that have a valid
bb = np.take(colum_outputs, score_indices,

4% penMV

self.threshold)[0]

score
axis=0)

© 2025 OpenMV, LLC

SUMMIT’

ARM Helium Accelerated Numpy

1. Al YOLO V5 bounding box score
outputs are thresholded at the
same time using ARM Helium
accelerated Numpy code!

2. Non-zero indices are then extracted
to produce a new array of just the

passing bounding boxes.

ARM Helium vector acceleration applied

to Numpy can be reused by all ML code.

12

EMBEDDED

Post-process with Numpy on Micropython (2/2) VISION

Get the score information
scores = bb[:, _YOLO_V5_SCORE]

Get the class information

classes = np.argmax(bb[:, _YOLO_V5_CLASSES:], axis=1)

Compute the bounding box information

x_center = bb[:, _YOLO_V5_CX]
y_center = bb[:, _YOLO_V5_CY]

w_rel = bb[:, _YOLO_V5_CW] * 0.5
bb[:, _YOLO_V5_CH] % 0.5

h_rel

Compute the bounding box coordinates
ib, ih, iw, ic = model.input shape[0]

xmin = (x_center - w_rel)
ymin = (y_center - h_rel)
xmax = (x_center + w_rel)
ymax = (y_center + h_rel)

Run NMS to filter out overlapping boxes

*

* ¥ o

iw
ih
iw
ih

boxes = NMS.run(scores, classes, xmin, ymin, xmax, ymax)

4% penMV

© 2025 OpenMV, LLC

SUMMIT’

Finishing Up

Numpy makes it easy to find the maximum
class score index of every bounding box row
in one line of code!

Operations to extract the xmin, ymin, xmax,
ymax of all bounding boxes are vectorized
across all bounding box rows! As fast as C!

Non-Max-Suppression to filter overlapping

bounding boxes, is implemented in Python
using Numpy too!

13

Multi-core processing in MicroPython
using OpenAMP on the OpenMV AE3

ay
W

penMV

© 2025 OpenMV, LLC

Easy to use multi-core programming using OpenAMP

High-Performance
Real-Time Processor Subsystem

High-Efficiency

Real-Time Processor Subsystem

IMHU | woT || EVIRTR |
Cortex-M55 Al/ML
+ Helium
(M55-HP)
Ethos-US5
M (NPU-HP)
(SRAM2, SRAM3)
Instr | Data NPU
Cache | Cache Memory

Lpsp1 |[Lpi2c Camera Always-On
LPUART LPCPI
nvic | bmA Audio || LPGPIO |
MHU [wor | LLP125 JLPPOM| 4 pryver |
Cortex-M55 EVTRTR | LPCMP |
+ Helium Al/ML
(MS55-HE) — | LPRTC |
— o | LFxo || LFRC |
(NPU-HE)
(SRAM4, SRAMS) | — ” So0 |
Instr | Data NPU
Cache | Cache Memory | Utility SRAM |

4% penMV

© 2025 OpenMV, LLC

EMBEDDED

VISION

SUMMIT’

The dream

High-efficiency core runs Al
model on Mic/IMU samples

Wake up high-performance core
on detection to process images

Transmit any detections to the
cloud and go back to sleep

15

EMBEDDED

One Python script, two processors, two MicroPython VMs VISION

SUMMIT’
import openamp
What we’ve done
Start the Low Power Core. . .
openamp.RemoteProc().start() 1. Python function decorator used to SpeCIfy
asyncio co-routines to run on the low-power
This function runs on the Main Core. core.

def task_callback(data):

2. The callback running on the main core will receive
This function runs on the Low Power Core. messages from the asyncio co-routine.

@openamp.async_remote(task_callback)
async def taskl(ept):

. Low-power core runs multiple asyncio co-
routines connected to multiple callbacks.

This runs on the Main Core.
while True:

3. Main core starts the low-power core and enters
its own main loop.
s
‘ “ p en Mv © 2025 OpenMV, LLC 16

EMBEDDED

A processor and NPU for audio detection VISION

SUMMIT’

46 GOPS available for a Wake Word Detector

This function runs on the Low Power Core.

@openamp.async_remote (task_callback) 1. Low power core has its own MinOPython VM,
async def taskl(ept): stack, heap, 46 GOPS NPU, and Mic.

import asyncio
from ml.apps import MicroSpeech

2. Low power core runs Google MicroSpeech
Google MicroSpeech ML Keyword Spotting Model model to detect a keyword like “OK Google”_

speech = MicroSpeech()

while True: .
¥ Listen for a keyword like ("Ok Google") 3. Low power core sends any detected label strings
label, scores = speech.listen() to the main core via the OpenAMP end-point
[{} 1.4
Send the detected keyword to the Main Core. ept :
if label:

ept.send(label)

N
qs p e n Mv © 2025 OpenMV, LLC Y

EMBEDDED

Which triggers NPU image processing VISION

SUMMIT
Reference the YOLO V5 model from ROM to XIP. 204 GOPS available for an Object Detector
model = ml.Model("/rom/yolo_v5_ 224 nano.tflite")
YOLO V5 t g t-pr i 1 . .
S postoracess(y oo 1. Main core loads YOLO V5 224 nano model

v5 = yolo_v5_postprocess()
i Thie function rune on the Main Core. reference from ROM to execute-in-place.
def task_callback(data):

if data.decode() == "Ok Google":

, 2. Main core wakes up when low-power core
Take a picture.
img = sensor.snapshot() sends wake word.

Detect objects 1in the image using the YOLO V5 model.

poxes = model-predictiiingl, calibackevs) 3. If “Ok Google” the main core takes a picture
]

#.#.I?o something with the detected objects. runs YOLOVS on |t to deteCt ObjeCtS, and

4 Go back to sleep. transmits the results.

while True:

machine.lightsleep() .
4. The main core then goes back to sleep.

N
qs p e n Mv © 2025 OpenMV, LLC 8

EMBEDDED

What will you create? VISION

SUMMIT’

* The OpenMV AE3
* 1x 400 MHz Cortex-M55 w/ 204 GOPS NPU
e 1x 160 MHz Cortex-M55 w/ 46 GOPS NPU

* Five sensors:
* 1MP color global shutter camera
e 8x8 400 cm ToF distance sensor

» Accelerometer/gyroscope

* Microphone

* Accelerometer/gyroscope/microphone are accessible by
the low-power core during lightsleep() by the main core.

© 2025 OpenMV, LLC 19

EMBEDDED

Resources VISION

SUMMIT

OpenMV Website 0
Visit us
https://openmv.io at Booth
#909
OpenMV N6 Product Page

https://openmv.io/collections/cameras
/products/openmv-n6

OpenMV AE3 Product Page

https://openmv.io/collections/cameras
/products/openmv-ae3

‘ - ey
:& p en Mv © 2025 OpenMV, LLC 20

https://openmv.io/
https://openmv.io/collections/cameras/products/openmv-n6
https://openmv.io/collections/cameras/products/openmv-ae3

