

Introduction to Radars and Its Use for Machine Perception

Amol Borkar- Director of Product Management/Marketing

Vencatesh S.- Design Engineering Architect

Cadence

Overview

- Radar Uses
- Radar Basics
- Radar Signal Processing
- Recent Advancements with Radar-Al Networks

Radar Uses, Sensors in Various Systems, and Radar (In Focus)

Uses of Radars: Traditional vs Current and New Avenues

Comparative View of Sensors

	Camera	Radar	LiDAR	Ultrasonic	LiDAR+Radar- Camera
Object detection					
Object classification			0		
Distance estimation					
Object edge precision					
Lane tracking					
Range of visibility	0		0		
Functionality in bad weather			0		
Functionality in poor lighting	0				
				!	Credits

Radar Basics

Basic Principle of a Radar

Image Credits

Functions of a Radar and Classification

- Range determination:
 - How far is the target?
- Velocity determination:
 - How fast is the target moving w.r.t. to the radar?
- Angle of arrival determination:
 - The direction of the target and its movement

- Some radars have only a few of the above functions
- Frequency Modulated Continuous Wave (FMCW) radar can determine range, velocity, and the angle of arrival

Functions of a Radar and Classification

- Properties of a FMCW Radar system
 - Maximum determinable: range, velocity, FOV
 - Resolution: range, velocity, and angle

- Classification of radar based on system properties as follows:
 - Short, medium, long-range radars
 - 3D (conventional), and 4D (imaging) radars

Conventional Non-Imaging Radars

FMCW Radar and Datacube Generation

Example System/ Waveform Parameters

- λ = 3.9 mm (77 GHz)
- BW = 150 MHz
- Chirp duration = 12 μ s
- CPI duration = 25 ms
- Number of chirps in CPI = N_{doppler} = speed resolution

© 2025 Cadence Design Systems

FMCW Radar and Datacube Generation

- Types of FMCW: Based on the number of TX antennas
 - Single input, multiple output (SIMO)
 - Multiple input, multiple output (MIMO)
- Based on the mode of TX multiplexing
 - Time division multiplexing (TDM)
 - Frequency division multiplexing (FDM)
 - Doppler division multiplexing (DDMA)
- Advantage of MIMO
 - Increase angular resolution with an efficient use of antennas
 - Example: Using 8 TX and 8 RX physical antennas enables a 64 (8x8) virtual-antenna array

Radar Signal Processing

Classical 4D Imaging Radar Signal Processing Algorithms

A typical radar processing chain based on classical signal processing

© 2025 Cadence Design Systems

13

- Range/Doppler FFTs
 - Determines targets distance and velocity using time to frequency domain transforms(FFTs)

- Involves windowing, scaling, and FFT op
- 4D Imaging radar FFT workloads → Large → High computation demands

- Data integration
 - Processes FFT'd data for passing to CFARs
 - Integrates signals across antennas with or without phase compensation

Involves magnitude accumulation, phase correction, FFTs, and log compute

- Constant False Alarm Rate: CFAR
 - Crude target presence detection algorithm
 - 1D, 2D, and 3D in nature. Uses sliding window filter of averaging/sorting nature to determine threshold to find localized peaks and its associated params

1D Row CFAR

Angle of Arrival

- Algorithm to determine the spatial position of the target, in azimuthal, and elevation direction
- Algorithms used: FFT-based, MUSIC/RMUSIC, beam scan, etc.

- Clustering
 - Group detections arising from a single target
 - Algorithms used

• Involves: Data sorting, data gathering, comparison, data tagging, data reordering, etc.

- Tracking
 - Predicting target position in future frames, associating across frames, managing history (track management, etc.)
 - Uses multiple algorithms like:
 - Prediction/correction: Kalman filters, EKF, UKF, particle filtering, etc.

Optimal state estimate

- Data gating: Mahalobonis distancebased, etc.
- Data association: GNN, PDAF, JPDAF, MHT, etc.

Recent Advancements With Radar-Al Networks

Advancements in Radar Signal Processing Using Al

- Applying AI started first with vision sensors followed by the audio domain.
- Since 2019-2020, academia and industry have started applying AI to radar data
- Labeled radar datasets have started appearing in the public domain, with more releases as we speak
- With more datasets being made available, researchers have begun taking a greater interest in this area
- Radar AI engineers have been trying to solve both
 - Classical problems in radar signal processing with greater accuracy
 - Vision like problems(classification/ segmentation/ detection, etc.) using radar data with AI
- Radar datasets are available in various representations
 - Point Cloud (PC), ADC data, RAD cube (Range Angle Doppler), RA (Range Angle), RD(Range Doppler), and spectrogram

Advancements in Radar Signal Processing Using Al

- Radar problems being solved using AI
 - Classical
 - Tracking
 - Detection
 - AOA
 - Clustering
 - Velocity estimation
 - Depth estimation
 - Newer areas
 - Classification
 - Micro-Doppler recognition
 - Multi-class segmentation
 - 2D/3D bounding boxes
 - Ghost detections
 - Interference suppression

Summary

Recap

- We started with various radar use cases and compared sensor capabilities
- We then introduced some basics of the FMCW radar and discussed imaging and non-imaging radars
- We also introduced a typical radar signal processing chain and understood its processing steps in detail
- We then discussed the rise of newer application areas of AI on radar data

Resource Slide

- Cadence Tensilica DSP IP's: https://www.cadence.com/en_US/home/tools/silicon-solutions/compute-ip.html
- Cadence Tools for AI: https://www.cadence.com/en_US/home/tools/silicon-solutions/ai-ip-platform.html#neuroweave-sdk
- Radar SW example apps:
 - 4D High Resolution Radar: https://support.cadence.com/apex/ArticleAttachmentPortal?id=a1OPP0000018ghR2AQ
 - FMCW SIMO 3D Radar: https://support.cadence.com/apex/ArticleAttachmentPortal?id=a1O3w000009fpu9EAA
 - Incabin Radar: https://support.cadence.com/apex/ArticleAttachmentPortal?id=a1OPP000001AZQX2A4

