2025
EMBEDDED

VISION

SUMMIT

Introduction to Deep Learning
and Visual Al: Fundamentals
and Architectures

Mohammad Haghighat
Senior Manager, CoreAl
eBay



EMBEDDED

Outline VISION
SUMMIT
* High level introduction to Al * CNNs (cont.)
* Classical vs. deep learning * Applications of CNNs

e Popular CNN architectures
* Mobile CNN architectures

* Neural networks and deep learning
* Fully connected networks

* Elements of a neural network * Attention mechanism

* Neural network training * Vision transformers
* Convolutional neural networks (CNNs) * CNNvs ViT

* Building blocks of CNNs * Conclusions

eb © 2025 ebay 2



High-level introduction to Al
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Classical learning vs deep learning
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*PCA: Principal Component Analysis
*SVM: Support Vector Machines
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What are neurons?
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... and what are neural networks?
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Neural networks as a vehicle for deep learning V!USJSQN

Universal Approximation Theorem

A one-hidden-layer neural network with enough neurons can approximate any continuous
function within the given input range.
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Neural network training

Loss and gradient descent algorithm

Weight update

X0
X1
net = z‘: WX,
Net input
function
Xn
input

Activation
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Backpropagation

Optimization such as
Gradient Descent

Calculation of
cost function

——

Output

© 2025 ebay

Cost

EMBEDDED

VISION

SUMMIT

Initial Gradi
Weight l' radient
,’ /
1
Incremental
Step \
/ Minimum Cost
Derivative of Cost
>
Weight

Reference



https://medium.com/nerd-for-tech/deep-learning-activation-functions-their-mathematical-implementation-b620d536d39b
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Fully Connected Networks Wi Yo

Convolutional Neural Networks
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* 3D CNNs
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Image as an input data
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Convolutional vs fully connected

Convolutional layer

e Capture local patterns and spatial
relationships between pixels

e Parameter efficiency: shared weights
Better generalization: translation invariance
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Introduction to CNNs
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A Convolution Layer
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Number of parameters in a convolutional layer V!&!&ZN

Number of
parameters for a KXK
kernel:

(KXKXN+1) XM

N: input depth
M: output depth
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Pooling layer
Max Pooling Avg Pooling
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Building blocks of CNNs

A Multi-Layer CNN
fc_3 fc_4
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelU activation
Convolution Convolution A e
seidpadimg  MaxPooing  PLNICES  MaxPooling (with
(2x2) P g (2x2) i .dropout)
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Deep learning is representation learning
(a.k.a. feature learning)

Deep neural

networks learn
hierarchical feature |&
representations
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Applications of CNNs

Image Classification
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Object Detection

DOG, DOG, CAT
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Instance Segmentation

DOG, DOG, CAT
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Inception (2014)
Motivation: let the network decide what filter size to put in a layer
Filter
Filter concatenation
concatenation
e [ — S
3x3 convolutions 5x5 convolutions 1x1 convolutions
1x1 convolutions 3x3 convolutions 5x5 convolutions 3x3 max pooling 151 convolitions i 7 F
1x1 convolutions 1x1 convolutions 3x3 max pooling

Previous layer Previous layer

(a) Inception module, naive version (b) Inception module with dimension reductions
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GoogleNet (2014) - Top-5 Error 6.67% on ImageNet
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Residual block with a skip connection

X
X l \ 4

weight layer

weight layer ]_-(X) I relu
relu X
‘F(X) l weight layer identit
weight layer \}aentity
¥ relu F(x)+x
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ResNet (2015) — Top-5 Error 3.57% on ImageNet for ResNet-152
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Trend of CNN-based classifi
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Other models -o State-of-the-art models
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Trend of CNN-based classifiers

Inception-v4
80 - ,
Inception-v3 ‘ : ResNet-152
- ResNet-50 . : VGG-16 VGG-19
1 ResNet-101
. ResNet-34
& 70 - ’ ResNet-18
=%
@ Gcrc-gLeNet
3 ENet
e 65 4
;}' o BN-NIN
= 60 - 5M 35M 65M a5M 125M 155M
BM-AlexMNet
35 AlexNet
50 r 1 T . 1 T
0 5 10 15 20 25 30 35 40

Operations [G-Ops]
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Comparison of popular CNN
architectures. The vertical axis
shows top 1 accuracy on
ImageNet classification. The
horizontal axis shows the number
of operations needed to classify
an image. Circle size is
proportional to the number of
parameters in the network.
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NASNet-A-Large
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MobileNets

Input

224 x 224 x 3
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MobileNets

Regular convolution

Number of parameters
for a KXK kernel:

KXKXNXM

N: input depth
M: output depth
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MobileNets

Depthwise separable

convolution

Number of parameters:

Depthwise:

e KXKXN
Pointwise:

e 1X1XM

Total:
e KXKXN+M

N: input depth
M: output depth
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Model shrinking hyperparameter
Depth Multiplier :: Width Multiplier :: alpha :: a Imagenet Accuracy vs Mult-Adds
80
To thin a network uniformly at each layer - o
®
Number of channels: M - aM g o’ o*
%] L )
o @
<
Width Multiplier  TmageNet  Million Million z % ‘
L ]
Accuracy Mult-Adds  Parameters aﬁ'
1.0 MobileNet-224  70.6% 569 4.2 £ 50 o |
0.75 MobileNet-224  68.4% 325 2.6 . *
0.5 MobileNet-224  63.7% 149 1.3 40
0.25 MobileNet-224  50.6% 41 0.5 10 100 1000
Million Mult-Adds

Log linear dependence between accuracy and computation
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Let’s uniformly scale network width, depth, and resolution with a set of fixed scaling coefficients

#channels , ) .

deeper

- layer_i
+ higher -, higher
7} resolution HxW i . resolution i _+_resolution
(a) baseline (b) width scaling (c) depth scaling (d) resolution scaling (e) compound scaling

Figure 2. Model Scaling. (a) is a baseline network example; (b)-(d) are conventional scaling that only increases one dimension of network
width, depth, or resolution. (e) is our proposed compound scaling method that uniformly scales all three dimensions with a fixed ratio.
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EfficientNets

Note: the baseline BO architecture is
designed using neural architecture
search (NAS).
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The power of attention

eb

A mathematical mechanism that weighs the significance of each part of the input against all other
parts in the input

Training allows the model to learn how to calculate relevance between input parts based on the
contextual content

Removes the inductive biases we have placed on CNNs

Input Self-Attention
Convolution Self-Attention :
—~—
NN
| \\

Source: Tom Michiels, Synopsys, Embedded Vision Summit 2022 Source: Dosovitskiy et al., An Image is Worth 16x16 words, ICLR 2021
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A more generalized learning algorithm

Convolution

Input

Fixed trained weights (w,)
Fixed spatial context assumed

ebay

Fully connected layer

Yo . Output
W

1

o

Input

Fixed trained weights (w,)
No spatial relationships
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Self-attention
Cq

Qutput
—— [l ove
/
G,

Input

Variable weights, c,, based
on contextual relationships
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MLP MLP: Multi-Layer Perceptron,
Head aka Fully-Connected Layer
- 5—

Transformer Block
[ Norm ]
L
| ™M |

Transformer Block @,_
& 4 & 4 4 4 4 A 3 &

Transformer Block

Multi-Head
Attention

2 S0 00O0D 00D )

Linear Projectlon of Flattened Patches

=N I I [ 1 [ | I
WEI%--MHWWE
m ﬂ Image to Patches
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Transformer Block

Source: Dosovitskiy et al., An Image is Worth 16x16 words, ICLR 2021
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* There are open challenges...
* Requires huge datasets to train (these are large-data regime models)
* Computation and memory requirements increase quadratically with the
number of input parts

* Still computationally too expensive for edge inference”

* Transformer models with parameter sizes between 5 and 100 M, and computational requirements between 2 and
16 GFLOPs already exist. Source https://arxiv.org/pdf/2101.01169.pdf
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CNNs Transformers
Efficiency Global context
Advantages Spatial hierarchy Scalability: do better with

Established frameworks more data and larger size

* Limited context
Disadvantages e Sensitivity to translation
(e.g., rotation)

* Data hungry
* Computationally intensive
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* Compare and contrast the features of CNNs and transformers, such as:

* Input data representation (entire image vs patches)

Local features vs global features

Parameter efficiency (CNNs can achieve good performance with fewer parameters)

Training data requirements

Computational efficiency and memory requirements

Interpretability (which is one easier to interpret? CNNs are thought to be easier)
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We talked about:

* Deep neural networks and CNNs as the network of choice for computer vision

The building blocks of CNNs: Convolution layer, pooling layer, padding, stride, etc.

e Application of CNNs in computer vision: Image classification, object detection,
segmentation, etc.

* CNN architectures: Inception, GoogleNet, ResNet
* Edge-optimized CNNs architectures: MobileNets & EfficientNets

e Attention mechanism and ViTs

Choosing the right model for an application and target hardware is crucial
for accuracy and efficiency.
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Any questions?
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Resources VISION
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e EfficientNet: https://arxiv.org/abs/1905.11946

e Papers With Code: https://paperswithcode.com

e Understanding of MobileNet: https://wikidocs.net/165429

e New mobile neural network architectures https://machinethink.net/blog/mobile-architectures/

e An Analysis of Deep Neural Network Models for Practical Applications: https://arxiv.org/abs/1605.07678

e Deep Learning Equivariance and Invariance:
https://www.doc.ic.ac.uk/~bkainz/teaching/DL/notes/equivariance.pdf

¢ IndoML Student Notes: Convolutional Neural Networks (CNN) Introduction:
https://indoml.com/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction/

e Beginners Guide to Convolutional Neural Networks: https://towardsdatascience.com/beginners-guide-to-
understanding-convolutional-neural-networks-ae9ed58bb17d

e A Comprehensive Guide to Convolutional Neural Networks: https://towardsdatascience.com/a-comprehensive-
guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

e Dosovitskiy et al., An Image is Worth 16x16 words, ICLR 2021
e Tom Michiels, Synopsys, Embedded Vision Summit 2022
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