

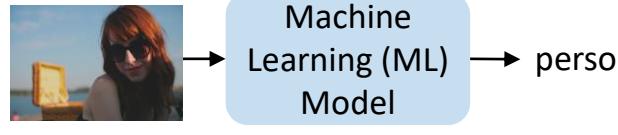
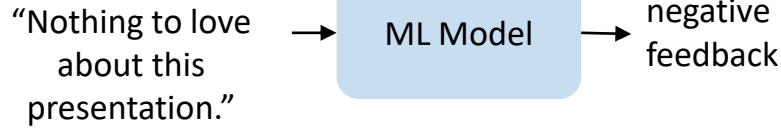
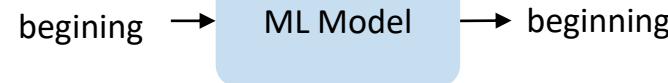
Introduction to Deep Learning and Visual AI: Fundamentals and Architectures

Mohammad Haghigat
Senior Manager, CoreAI
eBay

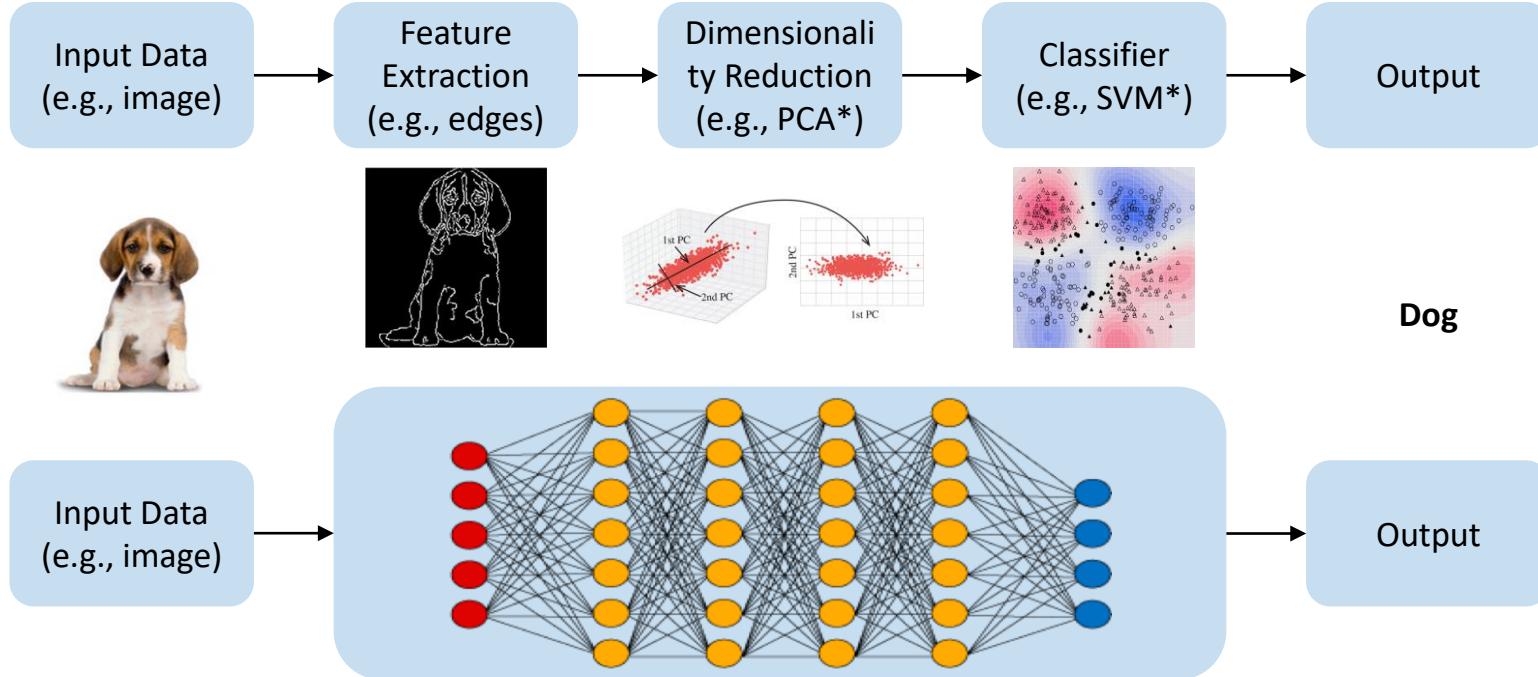
Outline

- High level introduction to AI
 - Classical vs. deep learning
- Neural networks and deep learning
 - Fully connected networks
 - Elements of a neural network
 - Neural network training
- Convolutional neural networks (CNNs)
 - Building blocks of CNNs
- CNNs (cont.)
 - Applications of CNNs
 - Popular CNN architectures
 - Mobile CNN architectures
- Attention mechanism
 - Vision transformers
 - CNN vs ViT
- Conclusions

High-level introduction to AI



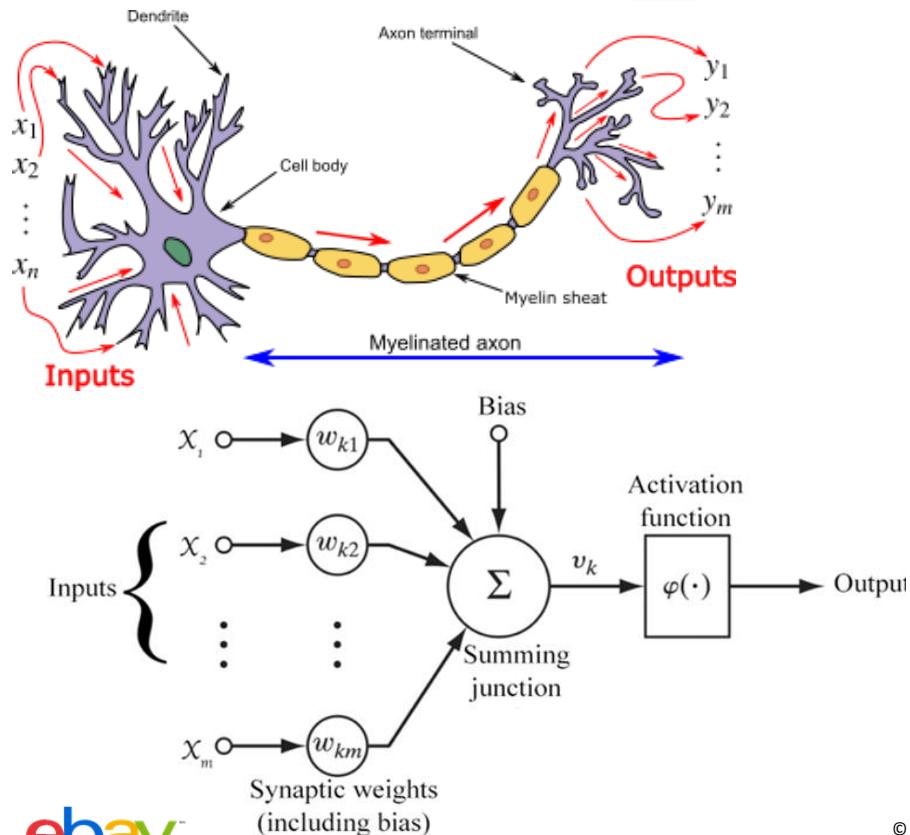
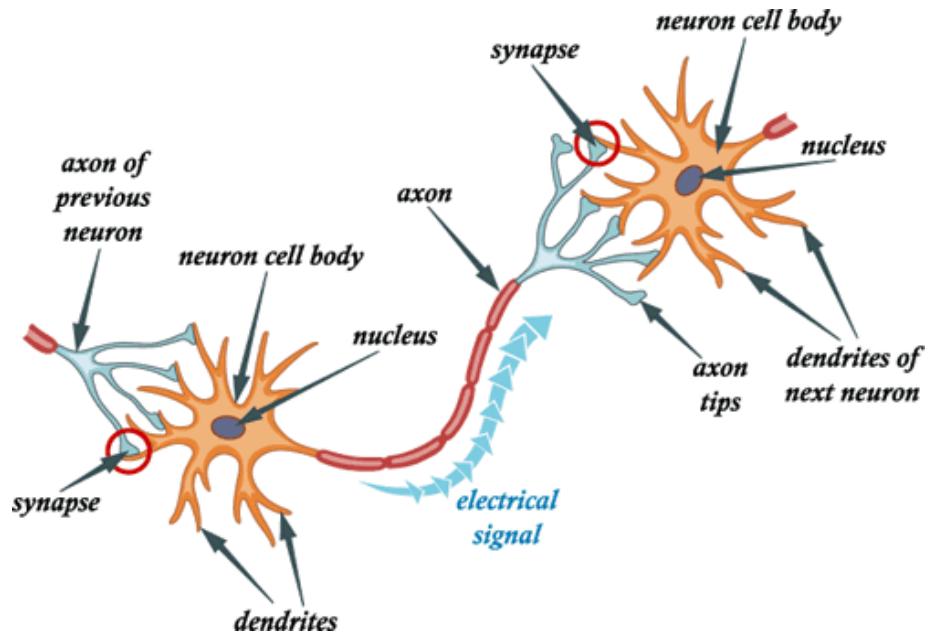
Classical learning vs deep learning



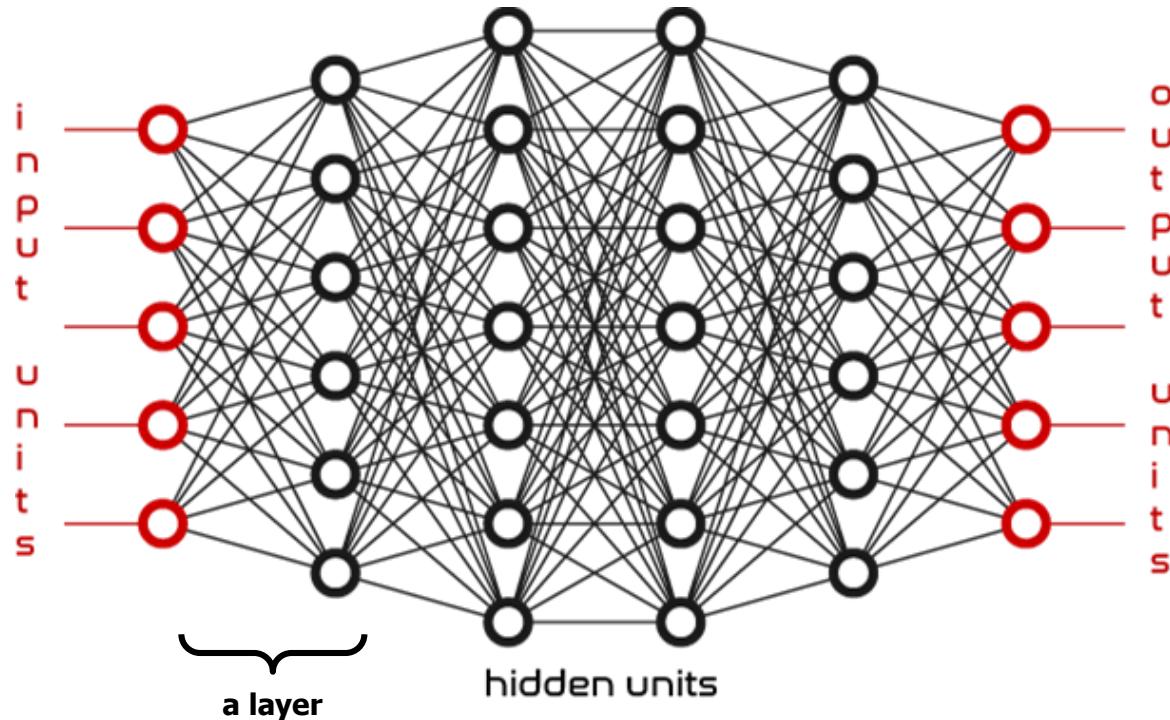
*PCA: Principal Component Analysis

*SVM: Support Vector Machines

What are neurons?



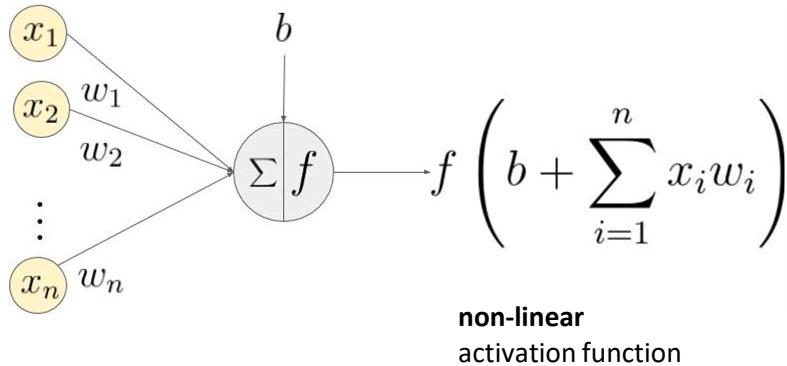
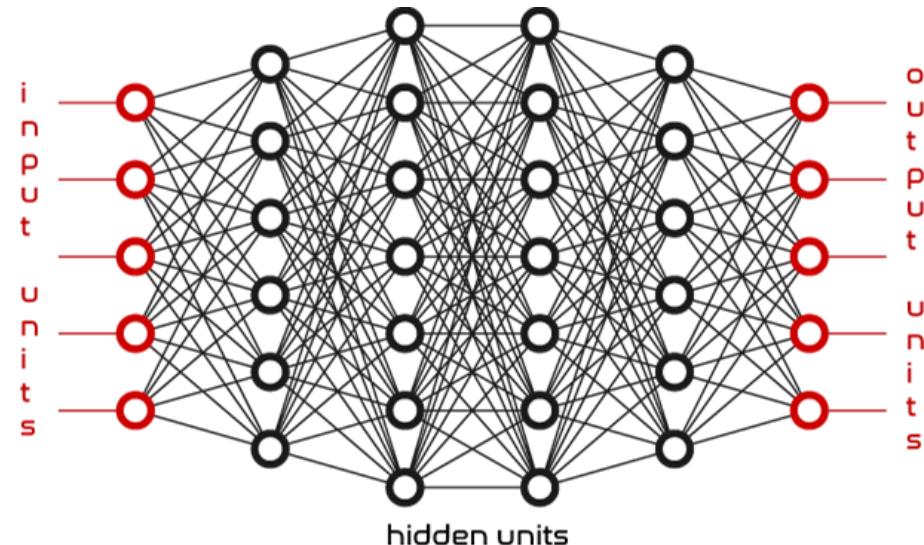
... and what are neural networks?



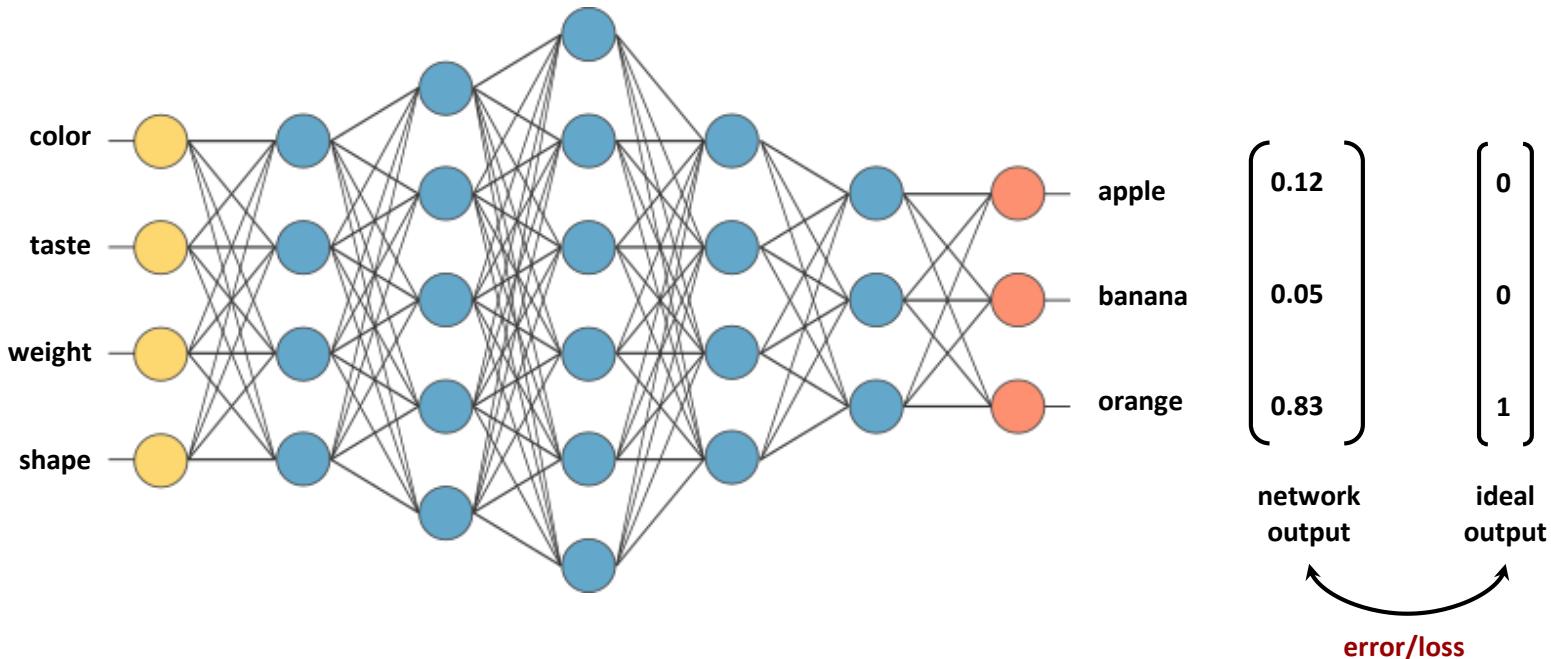
Neural networks as a vehicle for deep learning

Universal Approximation Theorem

A one-hidden-layer neural network with enough neurons can approximate **any** continuous function within the given input range.

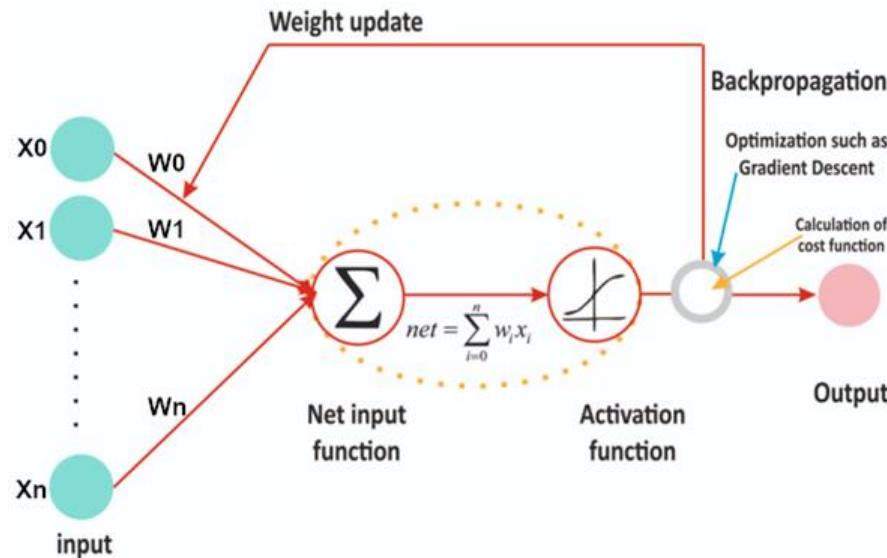
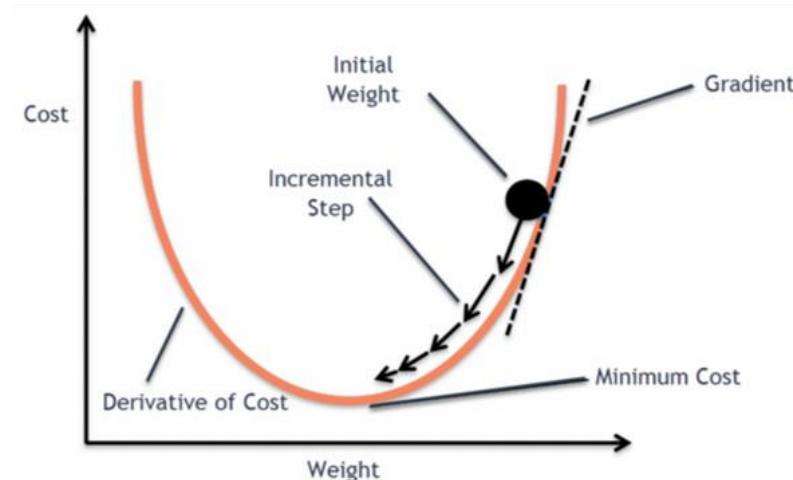


Neural network-based classifier



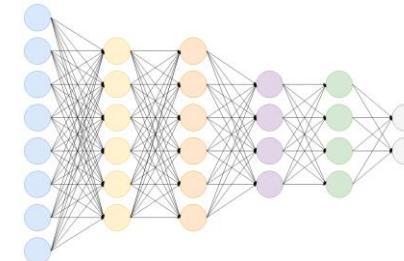
Neural network training

Loss and gradient descent algorithm



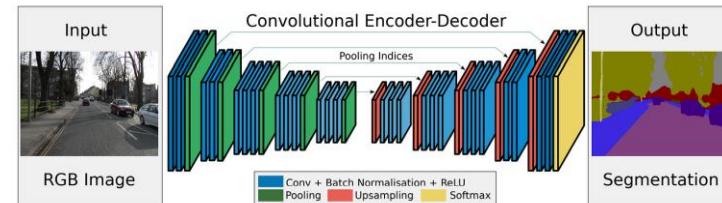
Different model types and architectures

Fully Connected Networks



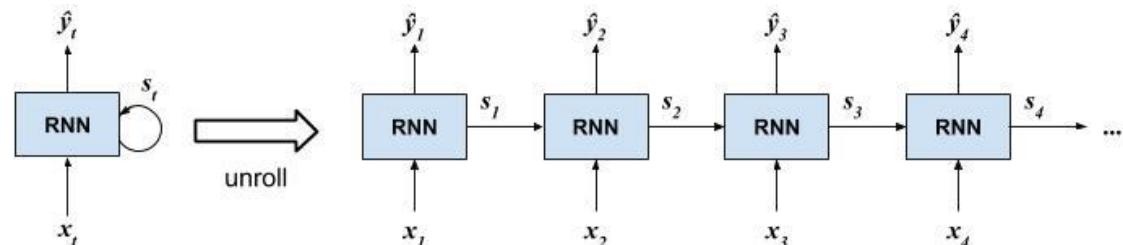
Convolutional Neural Networks

- Encoders
- UNETs
- 3D CNNs



Sequential Approaches

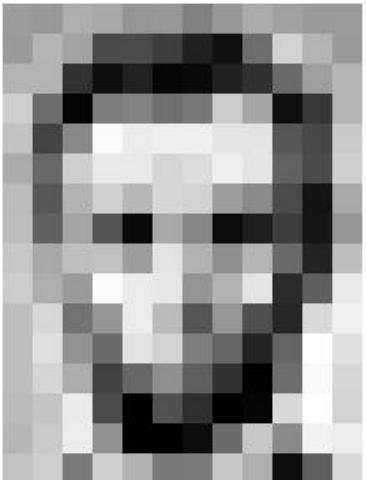
- RNNs
- LSTMs
- GRUs



Attention-based Networks

- Transformers

Image as an input data



157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	105	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	297	299	239	228	227	87	71	201
172	106	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
205	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	95	80	2	109	249	215
187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
195	206	123	207	177	121	123	200	175	13	96	218

157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	297	299	239	228	227	87	71	201
172	105	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
205	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	95	80	2	109	249	215
187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
195	206	123	207	177	121	123	200	175	13	96	218

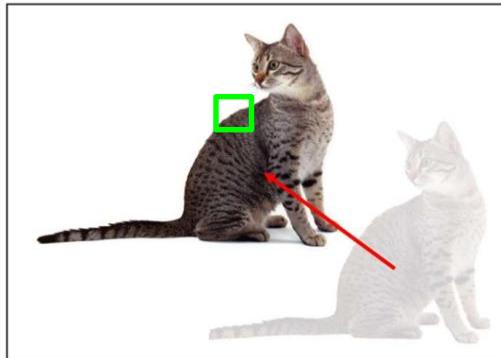
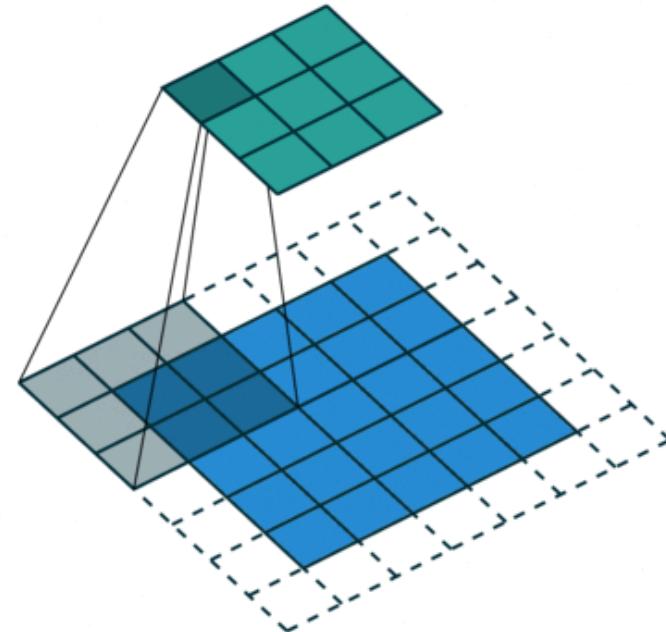
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	255
0	0	0	0	0	0	255	255
0	0	0	0	255	255	255	255
0	0	255	255	255	255	255	255
0	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255

How computer sees an edge

Convolutional vs fully connected

Convolutional layer

- Capture local patterns and spatial relationships between pixels
- Parameter efficiency: shared weights
- Better generalization: translation invariance



Introduction to CNNs

0	0	0	0	0	0	0	...
0	156	155	156	158	158	159	...
0	153	154	157	159	159	159	...
0	149	151	155	158	159	159	...
0	146	146	149	153	158	158	...
0	145	143	143	148	158	158	...
...

Input Channel #1 (Red)

0	0	0	0	0	0	0	...
0	167	166	167	169	169	169	...
0	164	165	168	170	170	170	...
0	160	162	166	169	170	170	...
0	156	156	159	163	168	168	...
0	155	153	153	158	168	168	...
...

Input Channel #2 (Green)

0	0	0	0	0	0	0	...
0	163	162	163	165	165	165	...
0	160	161	164	166	166	166	...
0	156	158	162	165	166	166	...
0	155	155	158	162	167	167	...
0	154	152	152	157	167	167	...
...

Input Channel #3 (Blue)

-1	-1	1
0	1	-1
0	1	1

Kernel Channel #1

308

1	0	0
1	-1	-1
1	0	-1

Kernel Channel #2

-498

0	1	1
0	1	0
1	-1	1

Kernel Channel #3

164

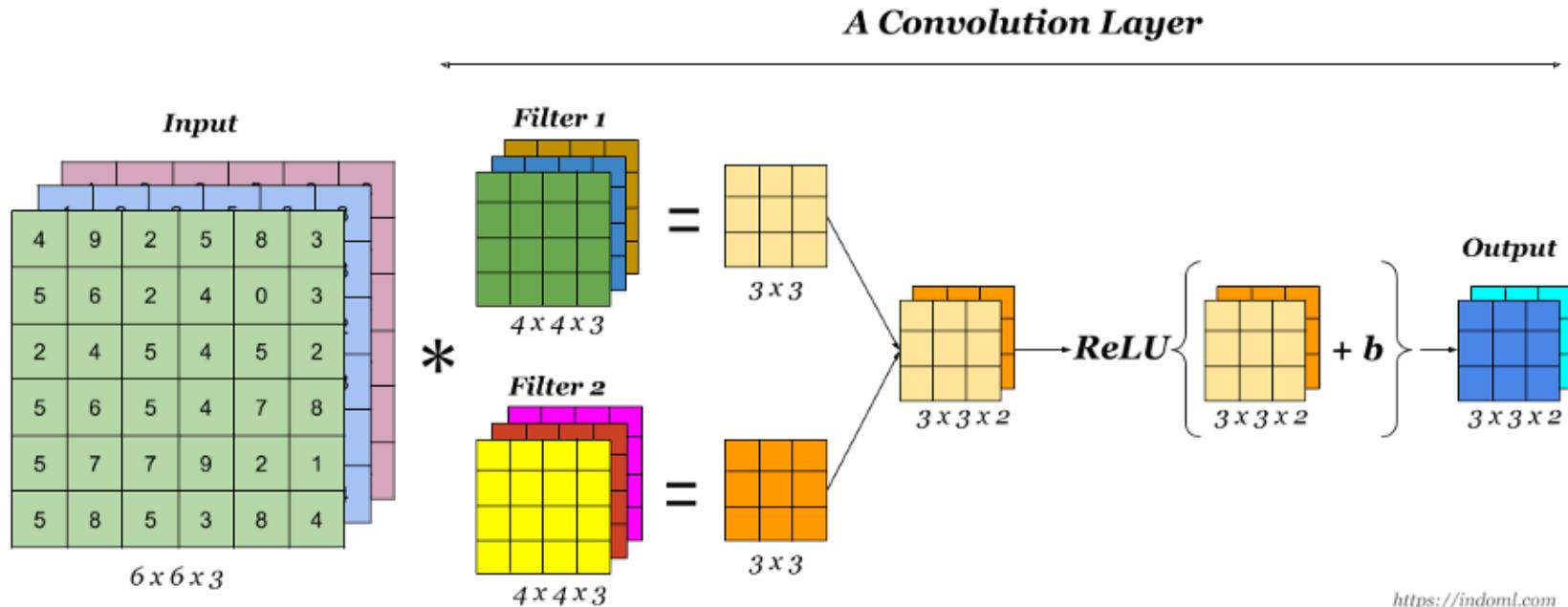
$$+ 1 = -25$$

Bias = 1

-25				...
				...
				...
				...
...

Output

Building blocks of CNNs



<https://indoml.com>

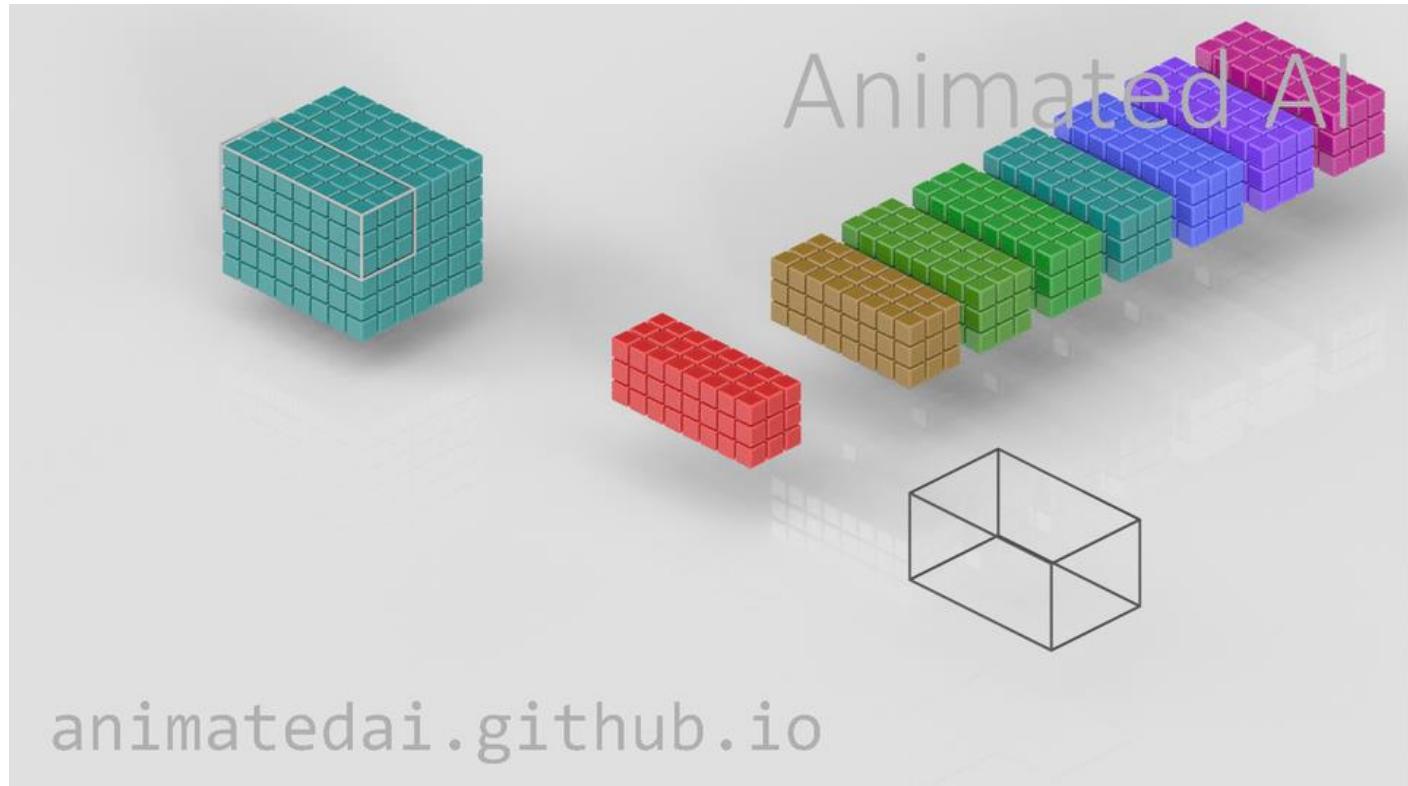
Number of parameters in a convolutional layer

Number of parameters for a $K \times K$ kernel:

$$(K \times K \times N + 1) \times M$$

N: input depth

M: output depth



Building blocks of CNNs

Pooling layer

Max Pooling

4	9	2	5
5	6	2	4
2	4	5	4
5	6	8	4

9	5
6	8

Avg Pooling

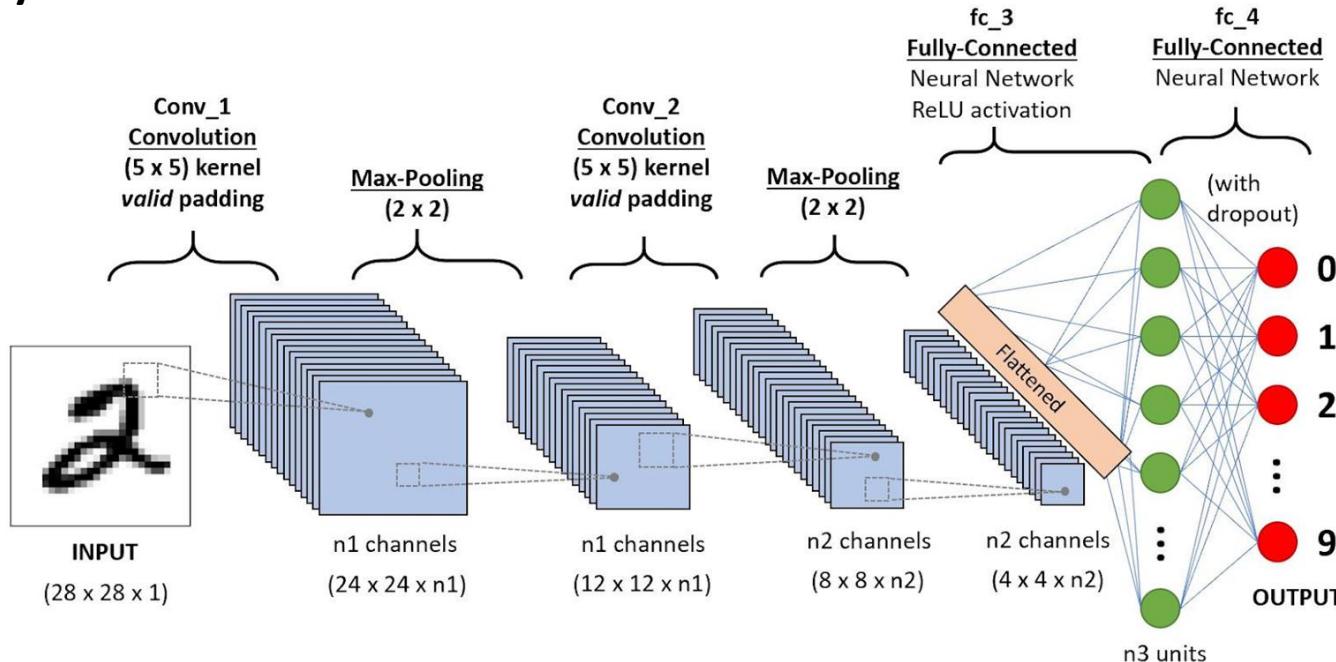
4	9	2	5
5	6	2	4
2	4	5	4
5	6	8	4

6.0	3.3
4.3	5.3

<https://indoml.com>

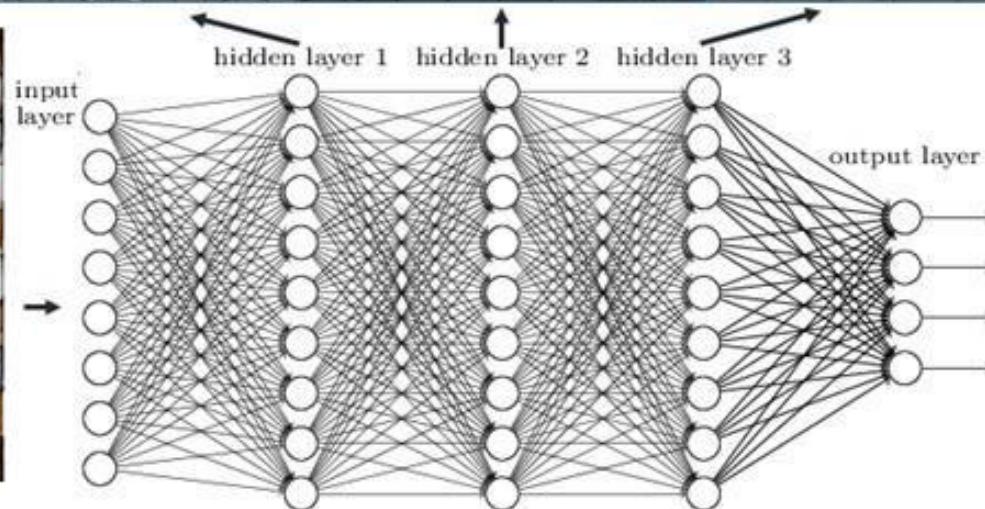
Building blocks of CNNs

A Multi-Layer CNN



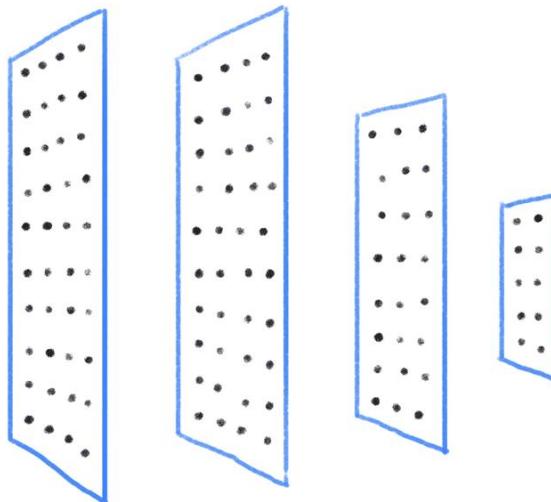
Deep learning is representation learning (a.k.a. feature learning)

Deep neural
networks learn
hierarchical feature
representations



Applications of CNNs

Image Classification

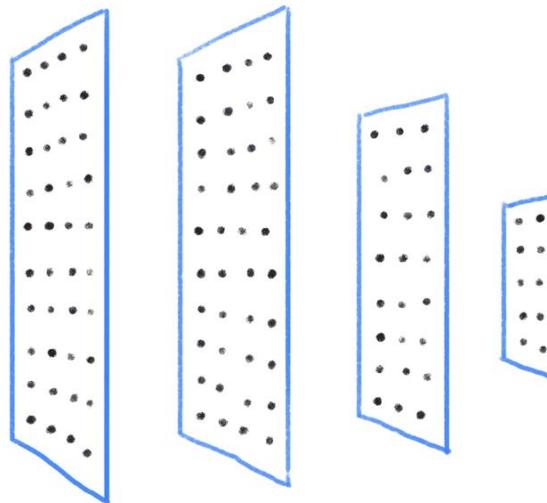


$$P_{dog} = 0.9$$

$$P_{cat} = 0.1$$

Applications of CNNs

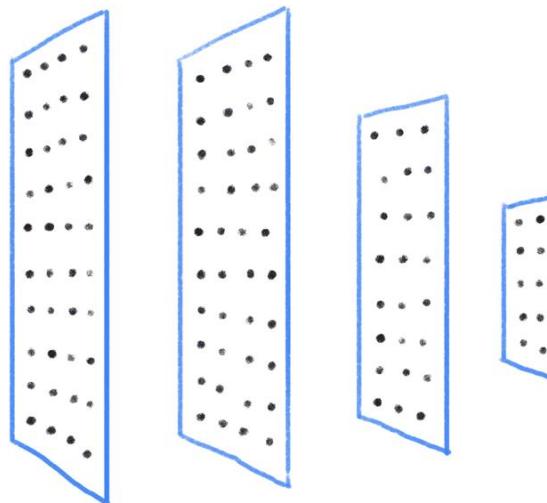
Object Detection



DOG, DOG, CAT

Applications of CNNs

Instance Segmentation

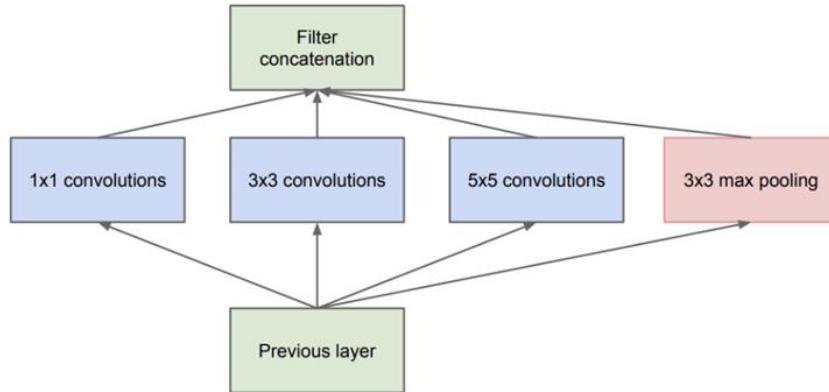


DOG, DOG, CAT

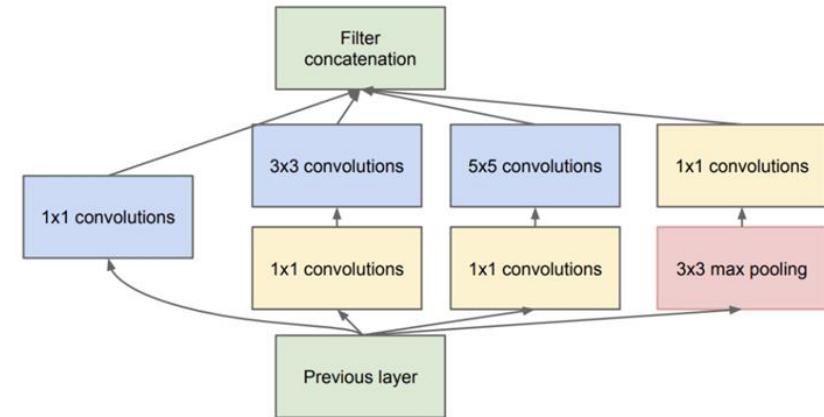
Popular CNN architectures

Inception (2014)

Motivation: let the network decide what filter size to put in a layer



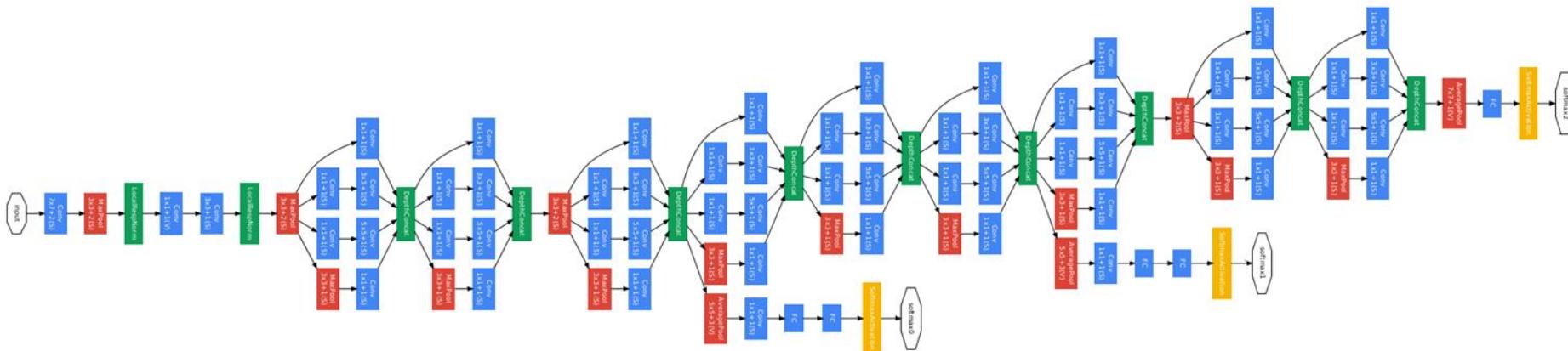
(a) Inception module, naïve version



(b) Inception module with dimension reductions

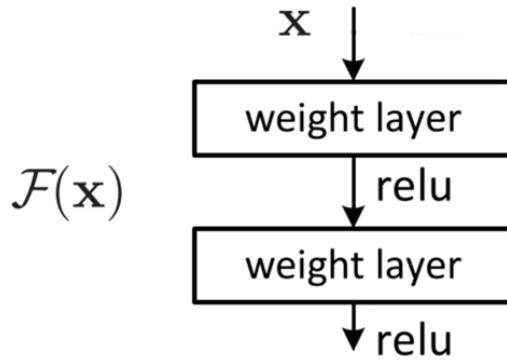
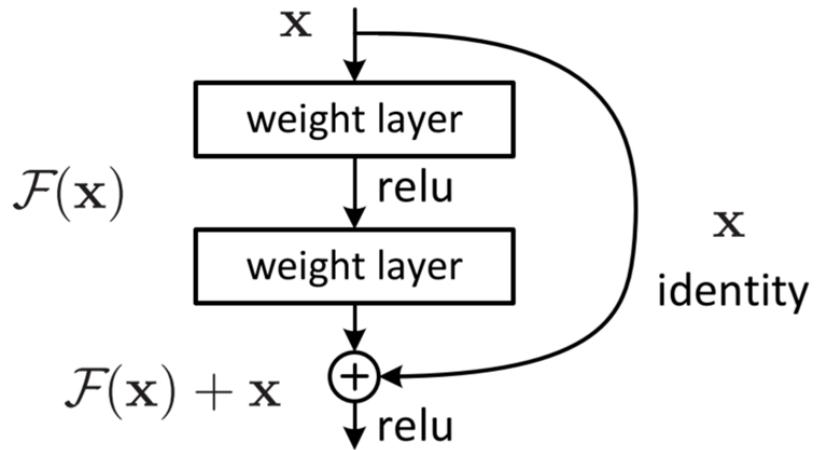
Popular CNN architectures

GoogleNet (2014) - Top-5 Error 6.67% on ImageNet



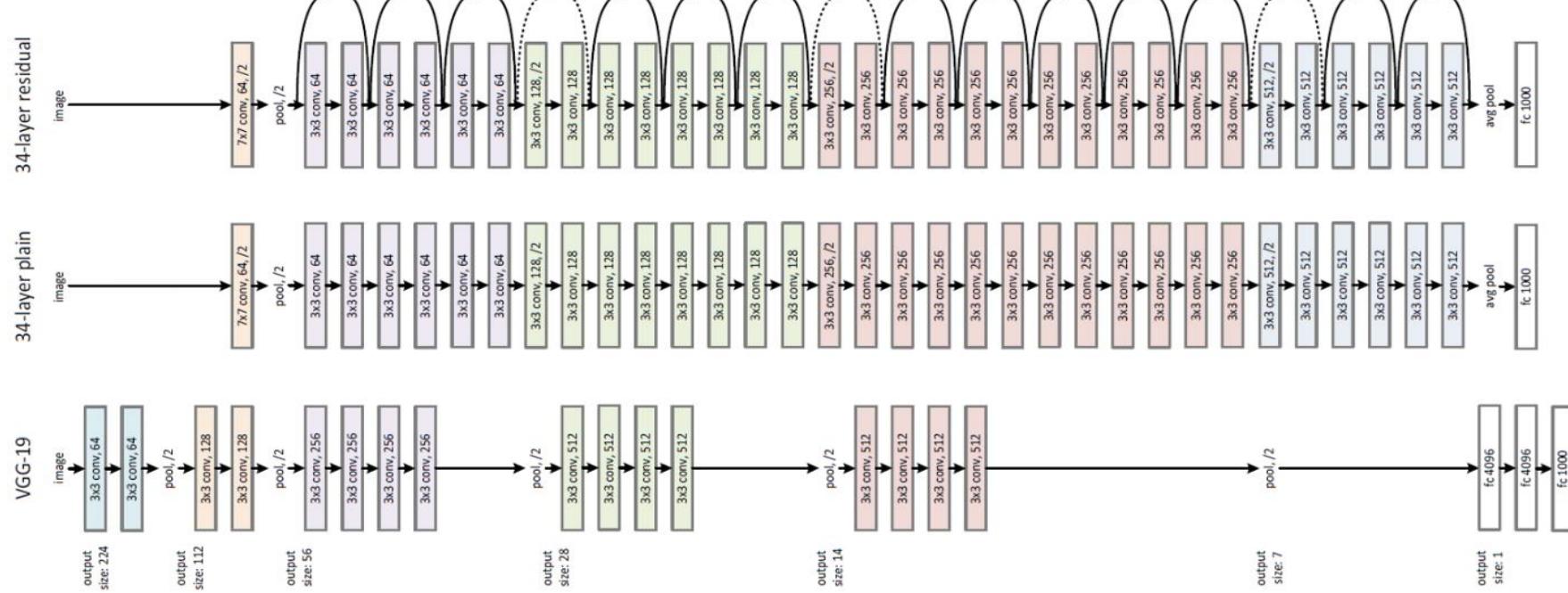
Popular CNN architectures

Residual block with a skip connection

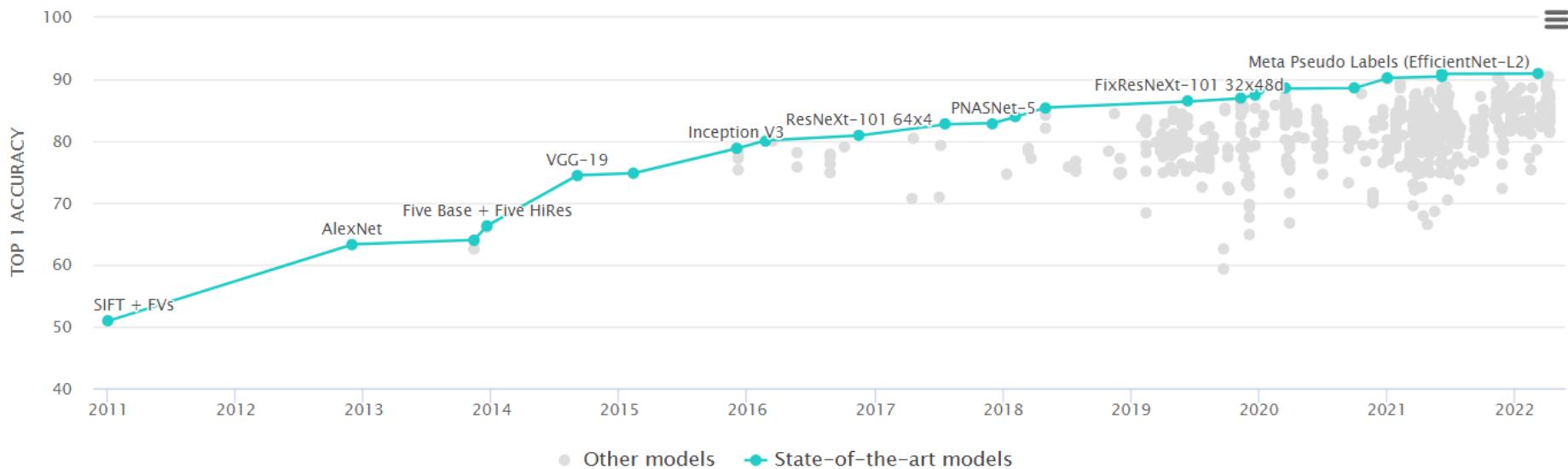


Popular CNN architectures

ResNet (2015) – Top-5 Error 3.57% on ImageNet for ResNet-152

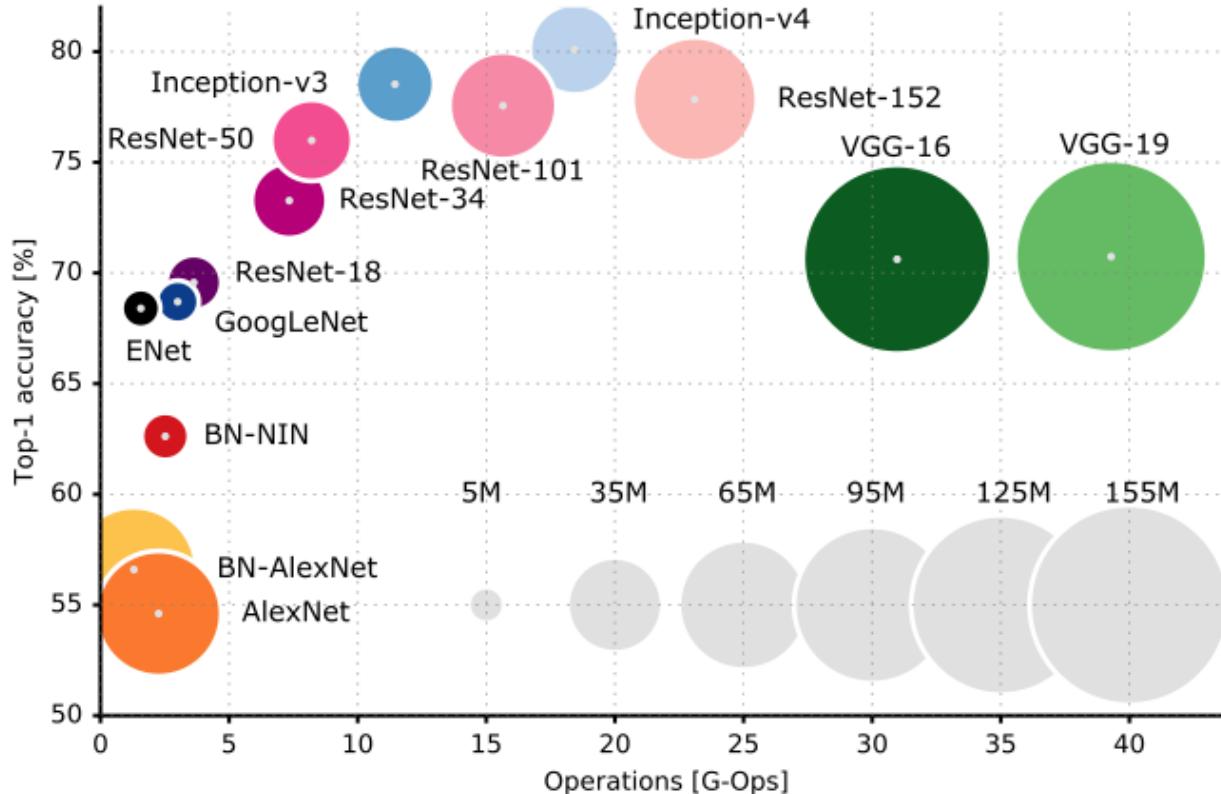


Trend of CNN-based classifiers



<https://paperswithcode.com>

Trend of CNN-based classifiers

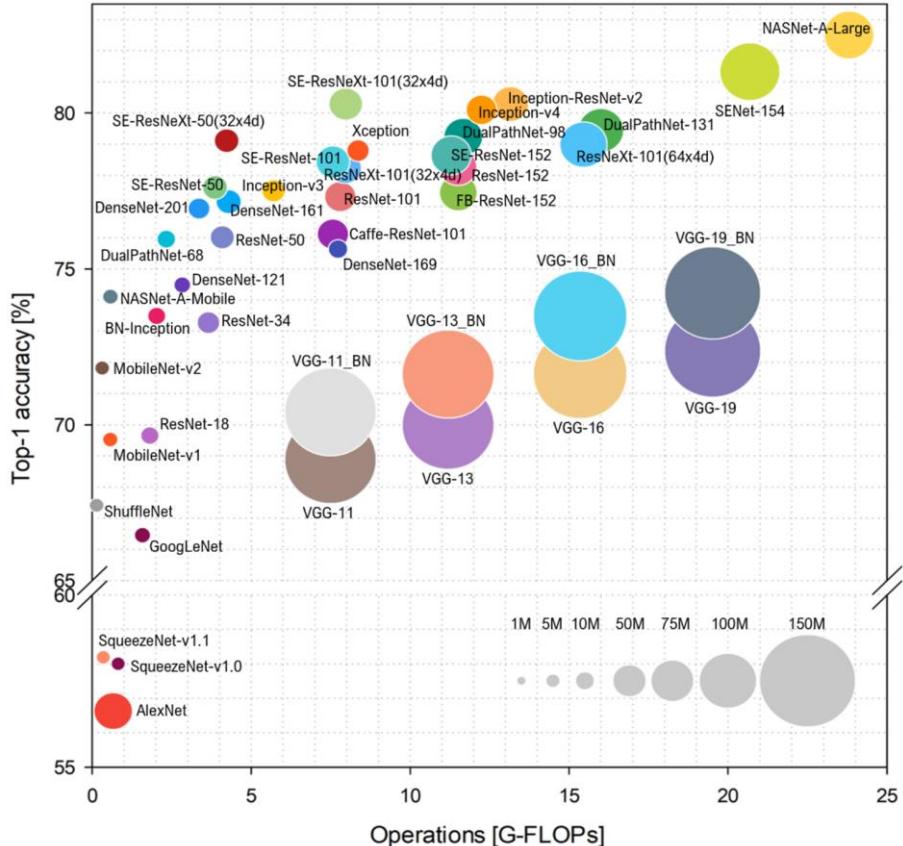


Comparison of popular CNN architectures. The vertical axis shows top 1 accuracy on ImageNet classification. The horizontal axis shows the number of operations needed to classify an image. Circle size is proportional to the number of parameters in the network.

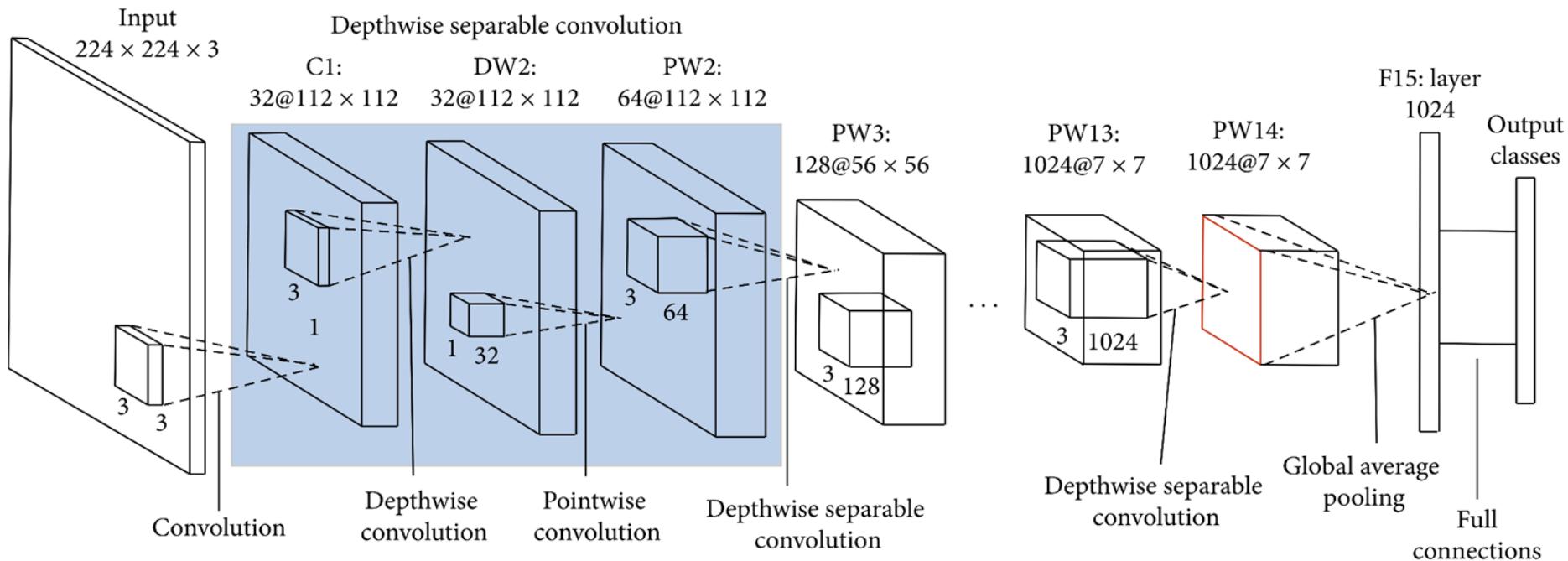
CNNs for edge devices

What do we want on edge?

- Low computational complexity
- Small model size for small memory
- Low energy usage
- Good enough accuracy (depends on application)
- Deployable on embedded processors
- Easily updatable (over-the-air)



MobileNets



MobileNets

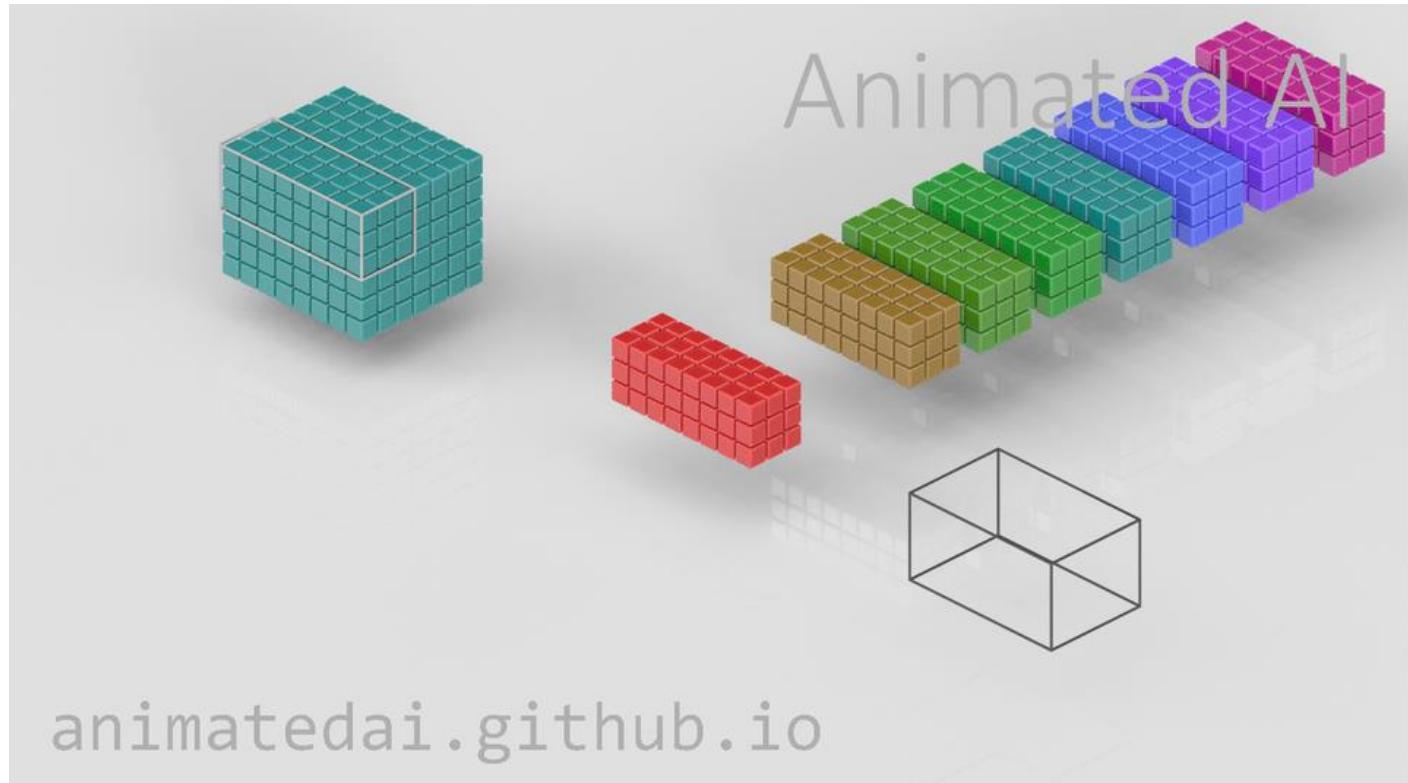
Regular convolution

Number of parameters
for a $K \times K$ kernel:

$$K \times K \times N \times M$$

N: input depth

M: output depth



MobileNets

Depthwise separable convolution

Number of parameters:

Depthwise:

- $K \times K \times N$

Pointwise:

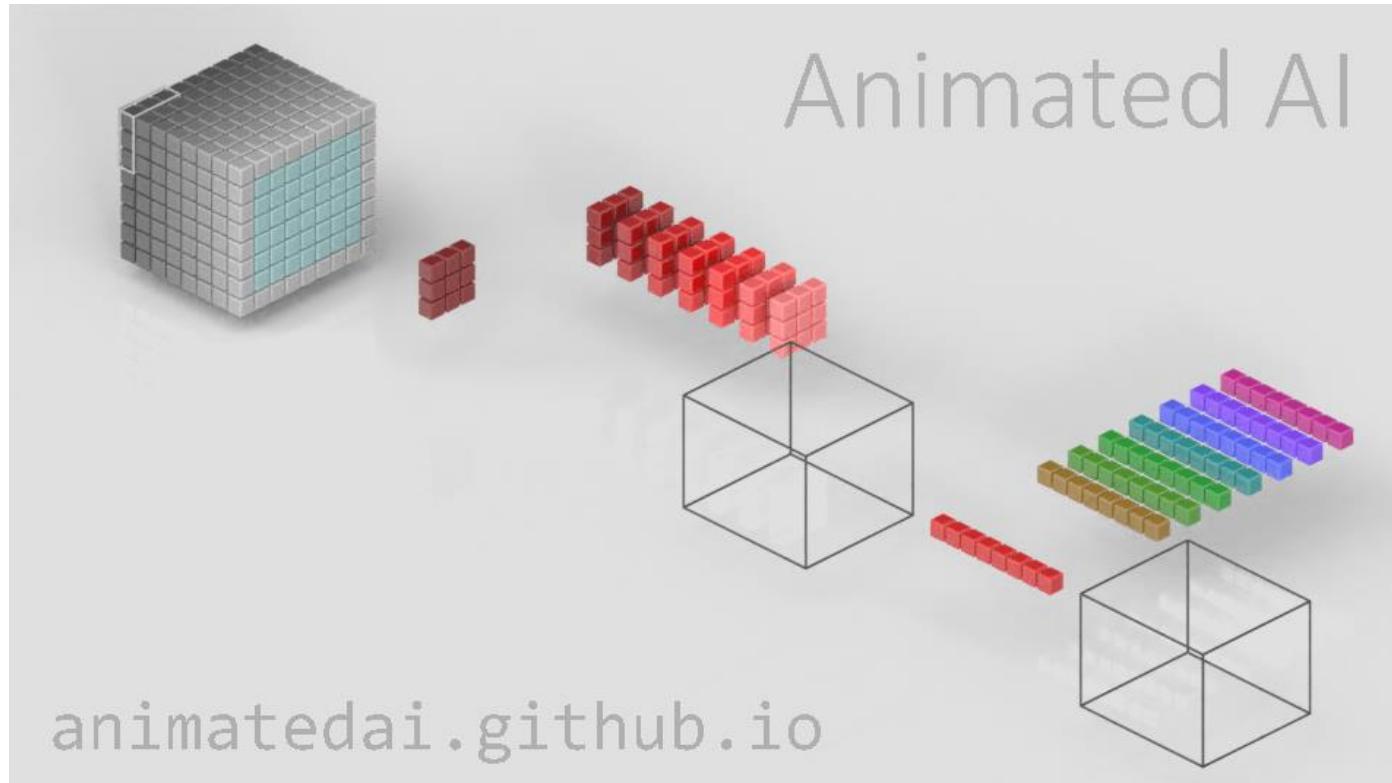
- $1 \times 1 \times M$

Total:

- $K \times K \times N + M$

N: input depth

M: output depth



MobileNets

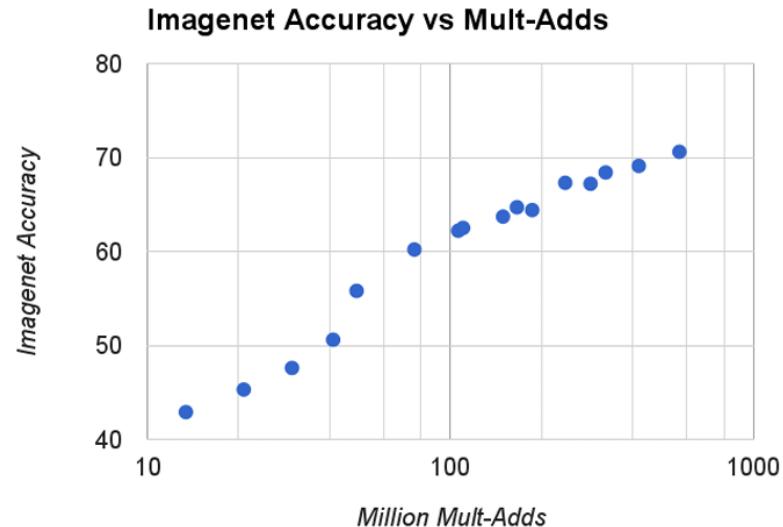
Model shrinking hyperparameter

Depth Multiplier :: Width Multiplier :: alpha :: α

To thin a network uniformly at each layer

Number of channels: $M \rightarrow \alpha M$

Width Multiplier	ImageNet Accuracy	Million Mult-Adds	Million Parameters
1.0 MobileNet-224	70.6%	569	4.2
0.75 MobileNet-224	68.4%	325	2.6
0.5 MobileNet-224	63.7%	149	1.3
0.25 MobileNet-224	50.6%	41	0.5



Log linear dependence between accuracy and computation

EfficientNets

Let's uniformly scale network width, depth, and resolution with a set of fixed scaling coefficients

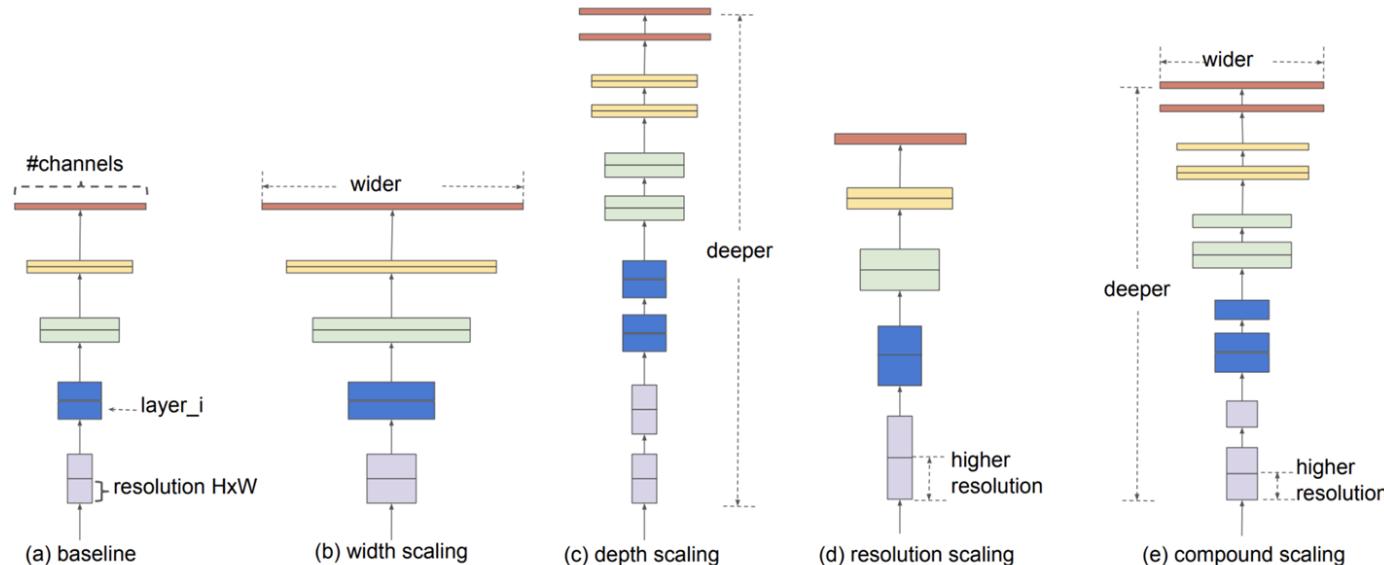
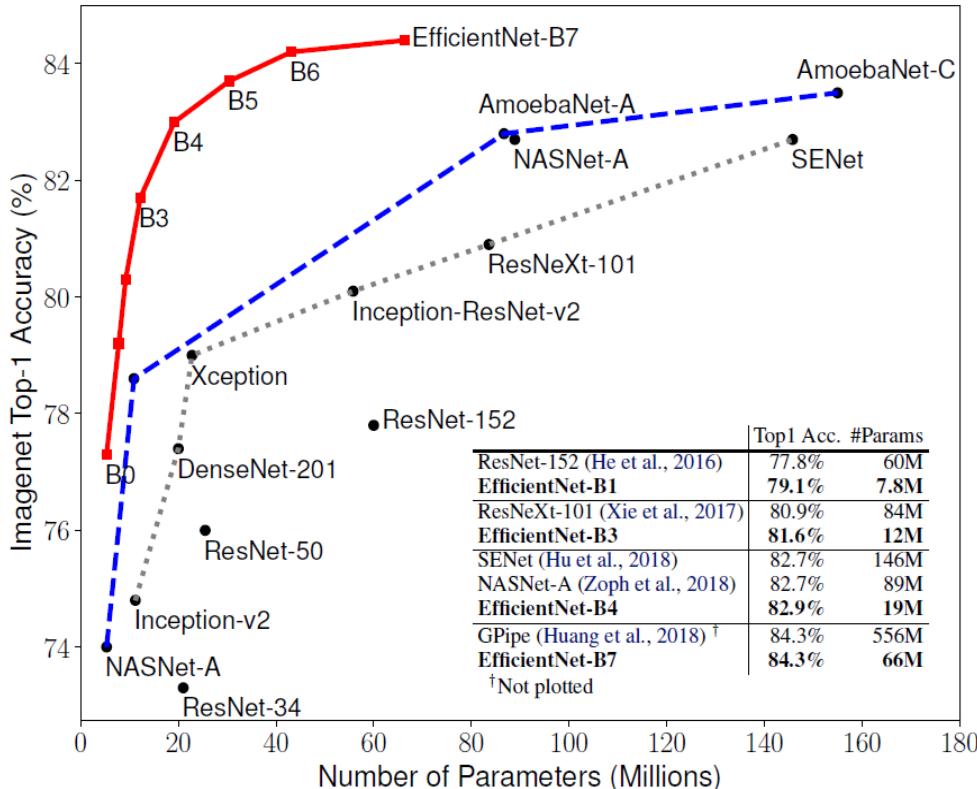


Figure 2. Model Scaling. (a) is a baseline network example; (b)-(d) are conventional scaling that only increases one dimension of network width, depth, or resolution. (e) is our proposed compound scaling method that uniformly scales all three dimensions with a fixed ratio.

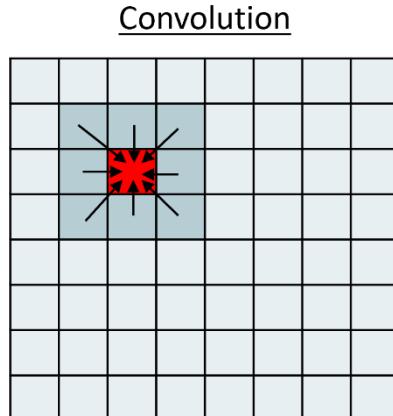
EfficientNets

Note: the baseline B0 architecture is designed using neural architecture search (NAS).

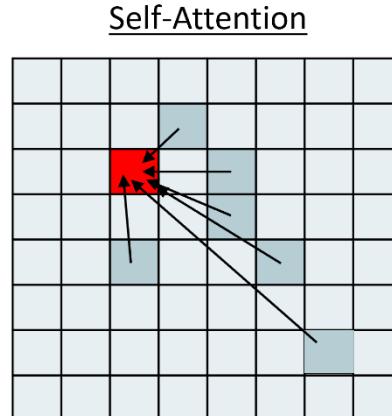
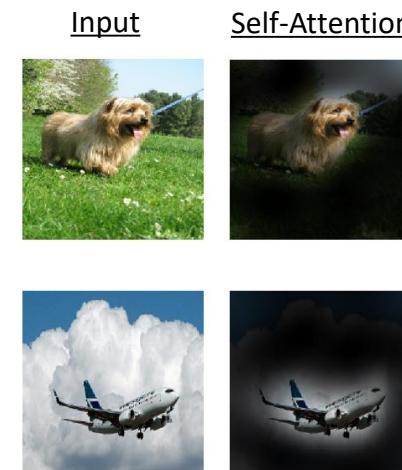


The power of attention

- A mathematical mechanism that weighs the significance of each part of the input against all other parts in the input
- Training allows the model to learn how to calculate relevance between input parts based on the contextual content
- Removes the inductive biases we have placed on CNNs



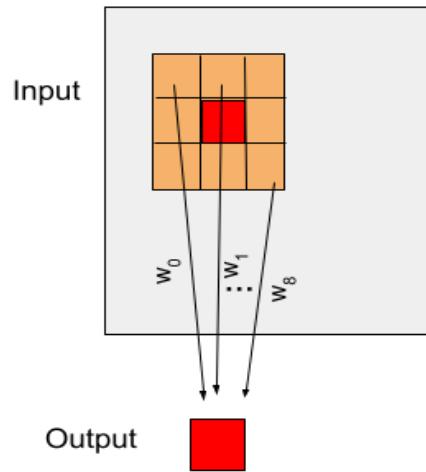
Source: Tom Michiels, Synopsys, Embedded Vision Summit 2022



Source: Dosovitskiy et al., An Image is Worth 16x16 words, ICLR 2021

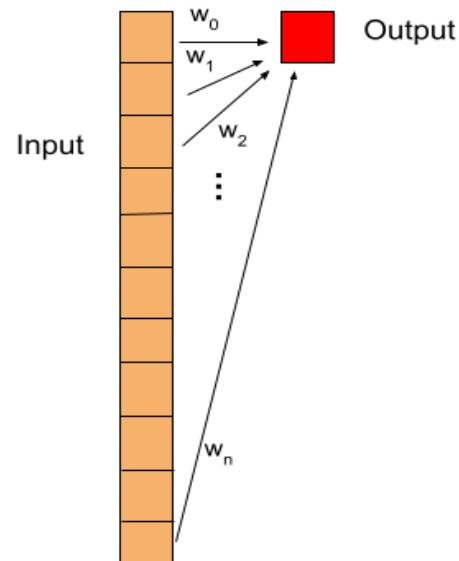
A more generalized learning algorithm

Convolution



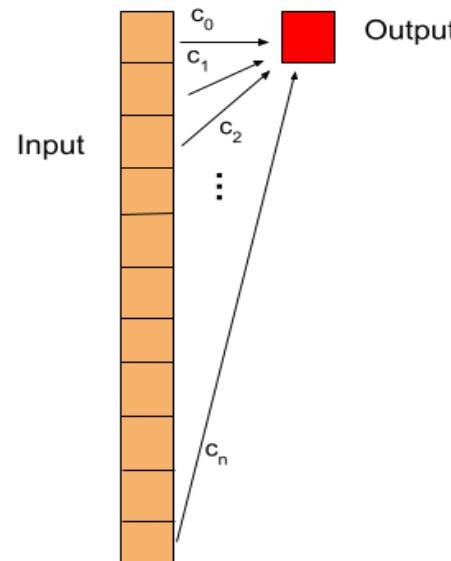
Fixed trained weights (w_i)
Fixed spatial context assumed

Fully connected layer



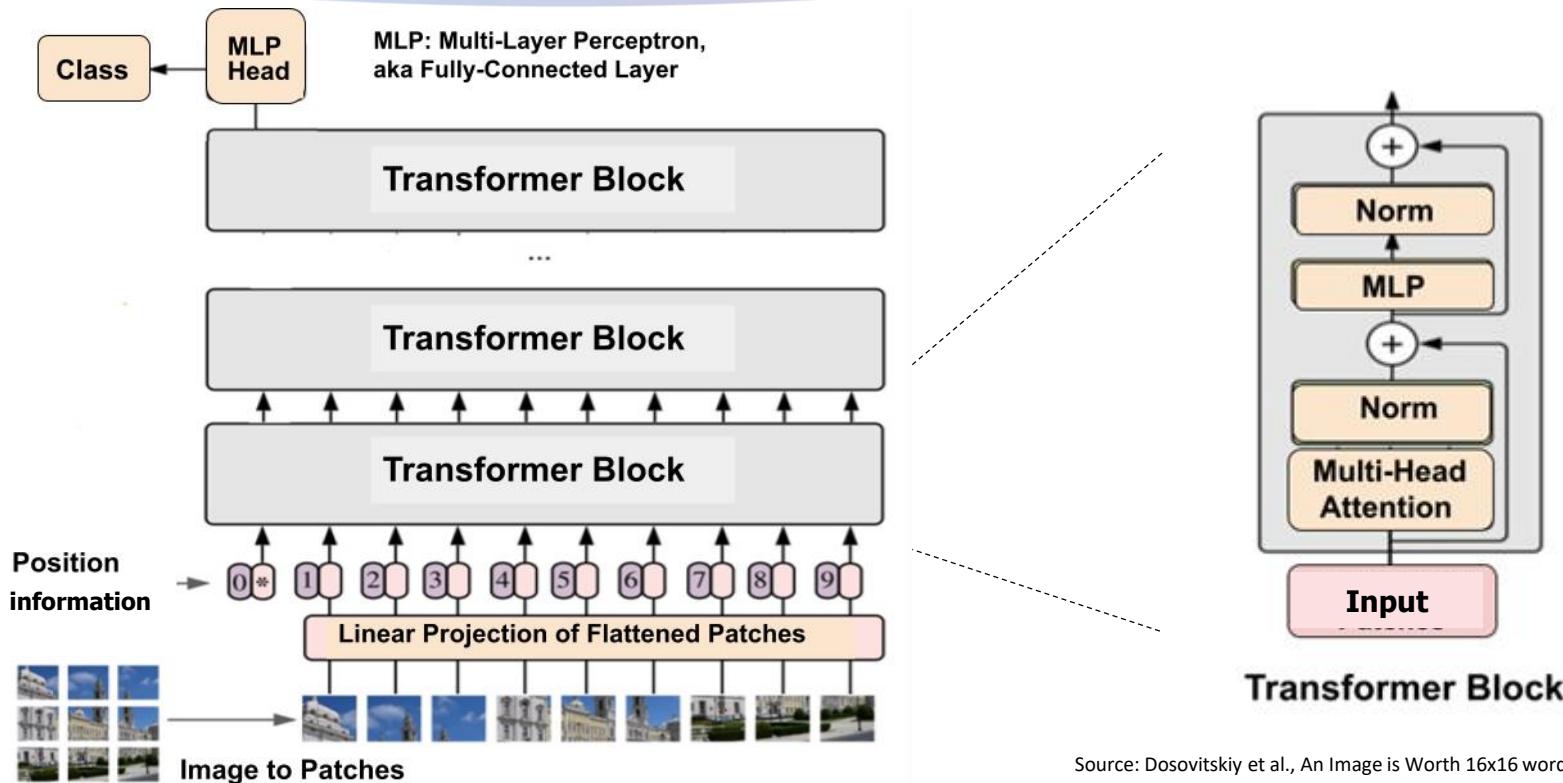
Fixed trained weights (w_i)
No spatial relationships

Self-attention



Variable weights, c_i , based
on contextual relationships

High-level overview of the ViT



What's the catch?

- There are open challenges...
 - Requires huge datasets to train (these are large-data regime models)
 - Computation and memory requirements increase quadratically with the number of input parts
 - Still computationally too expensive for edge inference*

* Transformer models with parameter sizes between 5 and 100 M, and computational requirements between 2 and 16 GFLOPs already exist. Source <https://arxiv.org/pdf/2101.01169.pdf>

CNNs vs. transformers

Advantages

CNNs

- Efficiency
- Spatial hierarchy
- Established frameworks

Transformers

- Global context
- Scalability: do better with more data and larger size

Disadvantages

- Limited context
- Sensitivity to translation (e.g., rotation)

- Data hungry
- Computationally intensive

What type of model should I use?

- Compare and contrast the features of CNNs and transformers, such as:
 - Input data representation (entire image vs patches)
 - Local features vs global features
 - Parameter efficiency (CNNs can achieve good performance with fewer parameters)
 - Training data requirements
 - Computational efficiency and memory requirements
 - Interpretability (which is one easier to interpret? CNNs are thought to be easier)

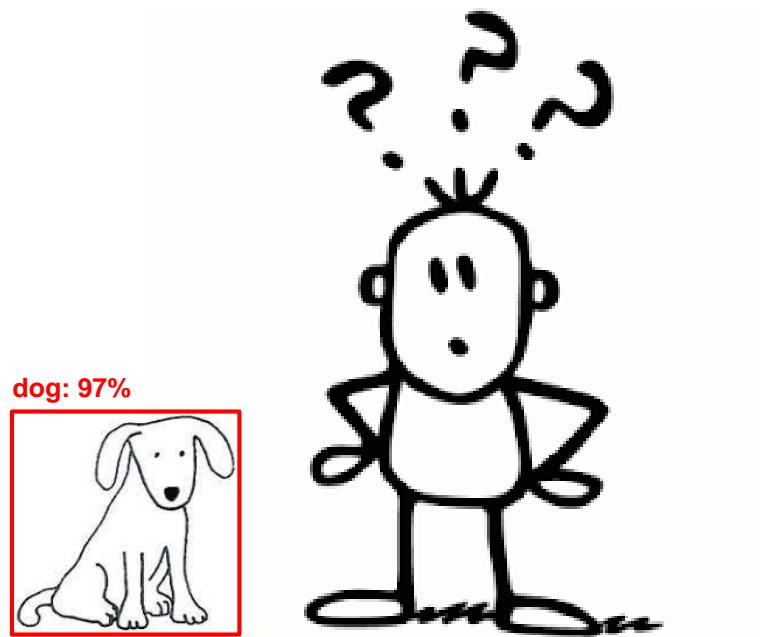
Conclusions

We talked about:

- Deep neural networks and CNNs as the network of choice for computer vision
- The building blocks of CNNs: Convolution layer, pooling layer, padding, stride, etc.
- Application of CNNs in computer vision: Image classification, object detection, segmentation, etc.
- CNN architectures: Inception, GoogleNet, ResNet
- Edge-optimized CNNs architectures: MobileNets & EfficientNets
- Attention mechanism and ViTs

Choosing the right model for an application and target hardware is crucial for accuracy and efficiency.

Any questions?



Resources

- EfficientNet: <https://arxiv.org/abs/1905.11946>
- Papers With Code: <https://paperswithcode.com>
- Understanding of MobileNet: <https://wikidocs.net/165429>
- New mobile neural network architectures <https://machinethink.net/blog/mobile-architectures/>
- An Analysis of Deep Neural Network Models for Practical Applications: <https://arxiv.org/abs/1605.07678>
- Deep Learning Equivariance and Invariance:
<https://www.doc.ic.ac.uk/~bkainz/teaching/DL/notes/equivariance.pdf>
- IndoML Student Notes: Convolutional Neural Networks (CNN) Introduction:
<https://indoml.com/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction/>
- Beginners Guide to Convolutional Neural Networks: <https://towardsdatascience.com/beginners-guide-to-understanding-convolutional-neural-networks-ae9ed58bb17d>
- A Comprehensive Guide to Convolutional Neural Networks: <https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53>
- Dosovitskiy et al., An Image is Worth 16x16 words, ICLR 2021
- Tom Michiels, Synopsys, Embedded Vision Summit 2022