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High-level introduction to AI
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Classical learning vs deep learning
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*PCA: Principal Component Analysis
*SVM: Support Vector Machines
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What are neurons?
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… and what are neural networks?

a layer
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Neural networks as a vehicle for deep learning

Universal Approximation Theorem

A one-hidden-layer neural network with enough neurons can approximate any continuous 
function within the given input range.

non-linear
activation function
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Neural network-based classifier
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Neural network training

Reference

Loss and gradient descent algorithm

https://medium.com/nerd-for-tech/deep-learning-activation-functions-their-mathematical-implementation-b620d536d39b
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Different model types and architectures

Fully Connected Networks

Convolutional Neural Networks
• Encoders
• UNETs
• 3D CNNs

Sequential Approaches
• RNNs
• LSTMs
• GRUs

Attention-based Networks
• Transformers
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Image as an input data

How computer sees an edge
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Convolutional vs fully connected

Convolutional layer

● Capture local patterns and spatial 
relationships between pixels

● Parameter efficiency: shared weights 
● Better generalization: translation invariance
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Introduction to CNNs
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Building blocks of CNNs
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Number of parameters in a convolutional layer

Number of 
parameters for a K×K
kernel:

(K × K × N + 1) ×M

N: input depth
M: output depth
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Building blocks of CNNs

Pooling layer
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Building blocks of CNNs

A Multi-Layer CNN
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Deep learning is representation learning
(a.k.a. feature learning)
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Applications of CNNs

Image Classification

Pdog = 0.9

Pcat = 0.1
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Applications of CNNs

Object Detection
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Applications of CNNs

Instance Segmentation
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Popular CNN architectures

Inception (2014)

Motivation: let the network decide what filter size to put in a layer
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Popular CNN architectures

GoogleNet (2014)  - Top-5 Error 6.67% on ImageNet
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Popular CNN architectures

Residual block with a skip connection
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Popular CNN architectures

ResNet (2015) – Top-5 Error 3.57% on ImageNet for ResNet-152
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Trend of CNN-based classifiers

https://paperswithcode.com
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Trend of CNN-based classifiers

Comparison of popular CNN 
architectures. The vertical axis 
shows top 1 accuracy on 
ImageNet classification. The 
horizontal axis shows the number 
of operations needed to classify 
an image. Circle size is 
proportional to the number of 
parameters in the network. 
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CNNs for edge devices

What do we want on edge?

• Low computational complexity

• Small model size for small memory

• Low energy usage

• Good enough accuracy (depends on 
application)

• Deployable on embedded 
processors

• Easily updatable (over-the-air)
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MobileNets
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MobileNets

Regular convolution

Number of parameters 
for a K×K kernel:

K × K × N ×M

N: input depth
M: output depth
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MobileNets

Depthwise separable 
convolution

Number of parameters:

Depthwise:
• K × K × N

Pointwise:
• 1 × 1 ×M

Total:
• K × K × N + M

N: input depth
M: output depth
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MobileNets

Model shrinking hyperparameter

Depth Multiplier :: Width Multiplier :: alpha :: α

To thin a network uniformly at each layer
Number of channels: M → αM 

Log linear dependence between accuracy and computation
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EfficientNets

Let’s uniformly scale network width, depth, and resolution with a set of fixed scaling coefficients



© 2025 ebay 34

EfficientNets

Note: the baseline B0 architecture is 
designed using neural architecture 
search (NAS).



• A mathematical mechanism that weighs the significance of each part of the input against all other 
parts in the input

• Training allows the model to learn how to calculate relevance between input parts based on the 
contextual content

• Removes the inductive biases we have placed on CNNs

The power of attention

Source: Tom Michiels, Synopsys, Embedded Vision Summit 2022

Input Self-Attention

Source: Dosovitskiy et al., An Image is Worth 16x16 words, ICLR 2021
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A more generalized learning algorithm
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High-level overview of the ViT

information Input
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Source: Dosovitskiy et al., An Image is Worth 16x16 words, ICLR 2021



• There are open challenges…

• Requires huge datasets to train (these are large-data regime models)

• Computation and memory requirements increase quadratically with the 

number of input parts

• Still computationally too expensive for edge inference*

* Transformer models with parameter sizes between 5 and 100 M, and computational requirements between 2 and 
16 GFLOPs already exist. Source https://arxiv.org/pdf/2101.01169.pdf

What’s the catch?
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https://arxiv.org/pdf/2101.01169.pd
https://arxiv.org/pdf/2101.01169.pdf
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• Efficiency
• Spatial hierarchy
• Established frameworks

• Global context
• Scalability: do better with 

more data and larger size

• Limited context
• Sensitivity to translation 

(e.g., rotation)

• Data hungry
• Computationally intensive

CNNs vs. transformers

CNNs Transformers

Advantages

Disadvantages



• Compare and contrast the features of CNNs and transformers, such as:

• Input data representation (entire image vs patches)

• Local features vs global features

• Parameter efficiency (CNNs can achieve good performance with fewer parameters)

• Training data requirements

• Computational efficiency and memory requirements

• Interpretability (which is one easier to interpret? CNNs are thought to be easier)

What type of model should I use?
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Conclusions

We talked about:

• Deep neural networks and CNNs as the network of choice for computer vision

• The building blocks of CNNs: Convolution layer, pooling layer, padding, stride, etc.

• Application of CNNs in computer vision: Image classification, object detection, 
segmentation, etc.

• CNN architectures: Inception, GoogleNet, ResNet

• Edge-optimized CNNs architectures: MobileNets & EfficientNets

• Attention mechanism and ViTs

Choosing the right model for an application and target hardware is crucial 
for accuracy and efficiency.
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Any questions?

dog: 97%



Resources

• EfficientNet: https://arxiv.org/abs/1905.11946

• Papers With Code: https://paperswithcode.com

• Understanding of MobileNet: https://wikidocs.net/165429

• New mobile neural network architectures https://machinethink.net/blog/mobile-architectures/

• An Analysis of Deep Neural Network Models for Practical Applications: https://arxiv.org/abs/1605.07678

• Deep Learning Equivariance and Invariance: 
https://www.doc.ic.ac.uk/~bkainz/teaching/DL/notes/equivariance.pdf

• IndoML Student Notes: Convolutional Neural Networks (CNN) Introduction: 
https://indoml.com/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction/

• Beginners Guide to Convolutional Neural Networks: https://towardsdatascience.com/beginners-guide-to-
understanding-convolutional-neural-networks-ae9ed58bb17d

• A Comprehensive Guide to Convolutional Neural Networks: https://towardsdatascience.com/a-comprehensive-
guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

• Dosovitskiy et al., An Image is Worth 16x16 words, ICLR 2021

• Tom Michiels, Synopsys, Embedded Vision Summit 2022
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