This market research report was originally published at Tractica's website. It is reprinted here with the permission of Tractica.
GPUs and CPUs Lead the Market Today, But There Is an Expanding Role for FPGAs, ASICs, SoC Accelerators, and Other Emerging Chipsets
Artificial intelligence (AI) technology is progressing at a rapid pace, as is the application of the technology to solve real-world problems. While the market for chipsets to address deep learning training and inference workloads is still a new one, the landscape is changing quickly – in the past year, more than 60 companies of all sizes have announced some sort of deep learning chipset or intellectual property (IP) design. A new report from Tractica finds that virtually every prominent name in the technology industry has acknowledged the need for hardware acceleration of AI algorithms and the semiconductor industry has responded by offering a wide variety of solutions.
Tractica forecasts that the market for deep learning chipsets will increase from $1.6 billion in 2017 to $66.3 billion by 2025. System-on-a-chip (SoC) accelerators such as those found in mobile devices will lead the market in terms of sheer volumes by the end of the forecast period, followed by application-specific integrated circuits (ASICs) and graphics processing units (GPUs). In terms of revenue, the ASIC market will be the largest by 2025, followed by GPUs and central processing units (CPUs). The edge computing market, where AI computation is done on the device, is expected to represent more than three-quarters of the total market opportunity, with the balance being in cloud/data center environments. Mobile phones will be a major driver of the edge market, and other prominent edge categories include automotive, smart cameras, robots, and drones.
“The deep learning chipset market has experienced a dynamic period of evolution during the past year and promises to become even more interesting,” says principal analyst Anand Joshi. “Beginning in 2018, many companies will start releasing their new chipsets, after which the market validation will then begin. Tractica expects that 2019 and 2020 will be the years when a ramp-up in deep learning chipset volumes will take place and winners will begin to emerge.”
Tractica’s report, “Deep Learning Chipsets”, assesses the industry dynamics, technology issues, and market opportunity surrounding deep learning chipsets including CPUs, GPUs, FPGAs, ASICs, SoC Accelerators, and other chipsets. The report provides market sizing and forecasts for the period from 2016 through 2025, with segmentation by chipset type, compute capacity, power consumption, world region, and inference versus training. The study also includes 19 profiles of key industry players. An Executive Summary of the report is available for free download on the firm’s website.