Alexey Rybakov, Senior Director for Embedded Systems at Luxoft, presents the "Deep Learning Beyond Cats and Cars: Developing a Real-life DNN-based Embedded Vision Product for Agriculture, Construction, Medical, or Retail" tutorial at the May 2017 Embedded Vision Summit.

By now we know very well how to design and train a neural network to recognize cats, dogs and cars. But what about real projects — for example, in agriculture, construction, medical, and retail? This how-to talk provides an overview of what it takes to design, train, and fine-tune a real-life DNN-based embedded vision solution. Rybakov explores algorithmic, data set, training, and optimization decisions that take you from proofs-of-concepts to solid, reliable, and highly optimized systems. This material is based on Luxoft's own successes, failures, and lessons learned while implementing embedded vision solutions.

Here you’ll find a wealth of practical technical insights and expert advice to help you bring AI and visual intelligence into your products without flying blind.



1646 N. California Blvd.,
Suite 360
Walnut Creek, CA 94596 USA

Phone: +1 (925) 954-1411
Scroll to Top