fbpx

Sylvain Dubois, Vice President of Business Development and Marketing at Crossbar, presents the “Memory-centric Hardware Acceleration for Machine Intelligence” tutorial at the May 2019 Embedded Vision Summit.

Even the most advanced AI chip architectures suffer from performance and energy efficiency limitations caused by the memory bottleneck between computing cores and data. Most state-of-the-art CPUs, GPUs, TPUs and other neural network hardware accelerators are limited by the latency, bandwidth and energy consumed to access data through multiple layers of power-hungry and expensive on-chip caches and external DRAMs. Near-memory computing, based on emerging nonvolatile memory technologies, enables a new range of performance and energy efficiency for machine intelligence.

In this presentation, Dubois introduces innovative and affordable near-memory processing architectures for computer vision and voice recognition, and presents architectural recommendations for edge computing and cloud servers. He also discusses how nonvolatile memory technologies, such as Crossbar Inc.’s ReRAM, can be directly integrated on-chip with dedicated processing cores, enabling new memory-centric computing architectures. The superior characteristics of ReRAM over legacy nonvolatile memory technologies help to address the performance and energy efficiency demands of machine intelligence at the edge and in the data center.

Here you’ll find a wealth of practical technical insights and expert advice to help you bring AI and visual intelligence into your products without flying blind.

Contact

Address

1646 North California Blvd.,
Suite 360
Walnut Creek, CA 94596 USA

Phone
Phone: +1 (925) 954-1411
Scroll to Top