“Practical Approaches to Training Data Strategy: Bias, Legal and Ethical Considerations,” a Presentation from Samasource

Audrey Jill Boguchwal, Senior Product Manager at Samasource, presents the “Practical Approaches to Training Data Strategy: Bias, Legal and Ethical Considerations” tutorial at the May 2019 Embedded Vision Summit.

Recent McKinsey research cites the top five limitations that prevent companies from adopting AI technology. Training data strategy is a common thread. Companies face challenges obtaining enough AI training data, developing strategies for robust data quality and ensuring that bias does not occur.

In this presentation, Boguchwal explores training data strategies that avoid bias in the data and that consider legal and ethical factors. She explains common types of bias, how bias can creep into datasets, the impact of bias, how to avoid bias and how to test your model for bias. She discusses legal and ethical considerations in data sourcing, including real cases where legal and ethical complications can arise, the impact of these complications and best practices for avoiding or mitigating them.

Here you’ll find a wealth of practical technical insights and expert advice to help you bring AI and visual intelligence into your products without flying blind.



1646 N. California Blvd.,
Suite 360
Walnut Creek, CA 94596 USA

Phone: +1 (925) 954-1411
Scroll to Top