Jack Erickson, Principal Product Marketing Manager at MathWorks, presents the “Deploying Deep Learning Applications on FPGAs with MATLAB” tutorial at the September 2020 Embedded Vision Summit.

Designing deep learning networks for embedded devices is challenging because of processing and memory resource constraints. FPGAs present an even greater challenge due to the complexity of programming in Verilog or VHDL, and the hardware expertise needed for prototyping on an FPGA. This talk illustrates a workflow to facilitate the design and deployment of these applications to FPGAs using pre-built bitstreams without the need for much hardware expertise.

Starting with a pre-trained model trained either in MATLAB or any framework of your choice, Erickson demonstrates the workflow to prototype and deploy the trained network from MATLAB to an FPGA. He illustrates this flow using a deep learning network for image recognition, deploying it to the Xilinx MPSoC board for inference using APIs from MATLAB. This demonstrates how deep learning algorithm engineers can quickly explore different networks and their performance on an FPGA from MATLAB.

See here for a PDF of the slides.


Here you’ll find a wealth of practical technical insights and expert advice to help you bring AI and visual intelligence into your products without flying blind.



1646 N. California Blvd.,
Suite 360
Walnut Creek, CA 94596 USA

Phone: +1 (925) 954-1411
Scroll to Top