“Imaging Systems for Applied Reinforcement Learning Control,” a Presentation from Nanotronics

Damas Limoge, Senior R&D Engineer at Nanotronics, presents the “Imaging Systems for Applied Reinforcement Learning Control” tutorial at the September 2020 Embedded Vision Summit.

Reinforcement learning has generated human-level decision-making strategies in highly complex game scenarios. But most industries, such as manufacturing, have not seen impressive results from the application of these algorithms, belying the utility hoped for by their creators. The limitations of reinforcement learning in real use cases intuitively manifest from the number of exploration examples needed to train the underlying models, but also from incomplete state representations for an artificial agent to act on.

In an effort to improve automated inspection for factory control through reinforcement learning, Nanotronics’ research is focused on improving the state representation of a manufacturing process using optical inspection as a basis for agent optimization. In this presentation, Limoge focuses on the imaging system: its design, implementation and utilization, in the context of a reinforcement agent.

See here for a PDF of the slides.

Here you’ll find a wealth of practical technical insights and expert advice to help you bring AI and visual intelligence into your products without flying blind.



1646 N. California Blvd.,
Suite 360
Walnut Creek, CA 94596 USA

Phone: +1 (925) 954-1411
Scroll to Top