Development Tools

Development Tools for Embedded Vision

ENCOMPASSING MOST OF THE STANDARD ARSENAL USED FOR DEVELOPING REAL-TIME EMBEDDED PROCESSOR SYSTEMS

The software tools (compilers, debuggers, operating systems, libraries, etc.) encompass most of the standard arsenal used for developing real-time embedded processor systems, while adding in specialized vision libraries and possibly vendor-specific development tools for software development. On the hardware side, the requirements will depend on the application space, since the designer may need equipment for monitoring and testing real-time video data. Most of these hardware development tools are already used for other types of video system design.

Both general-purpose and vender-specific tools

Many vendors of vision devices use integrated CPUs that are based on the same instruction set (ARM, x86, etc), allowing a common set of development tools for software development. However, even though the base instruction set is the same, each CPU vendor integrates a different set of peripherals that have unique software interface requirements. In addition, most vendors accelerate the CPU with specialized computing devices (GPUs, DSPs, FPGAs, etc.) This extended CPU programming model requires a customized version of standard development tools. Most CPU vendors develop their own optimized software tool chain, while also working with 3rd-party software tool suppliers to make sure that the CPU components are broadly supported.

Heterogeneous software development in an integrated development environment

Since vision applications often require a mix of processing architectures, the development tools become more complicated and must handle multiple instruction sets and additional system debugging challenges. Most vendors provide a suite of tools that integrate development tasks into a single interface for the developer, simplifying software development and testing.

Akida Exploits Sparsity For Low Power in Neural Networks

This blog post was originally published at BrainChip’s website. It is reprinted here with the permission of BrainChip. In the rapidly evolving field of artificial intelligence, edge computing has become increasingly vital for deploying intelligent systems in real-world environments where power, latency, and bandwidth are limited: we need neural network models to run efficiently. For

Read More »

5 Key Questions about Synthetic Data Every Data Scientist Should Know

This blog post was originally published at Geisel Software’s Symage website. It is reprinted here with the permission of Geisel Software. In this article, we tackle the 5 key questions about synthetic data that every data scientist must understand to stay ahead in the rapidly evolving world of AI. From its creation process to its

Read More »

Snapdragon Ride: A Foundational Platform for Automakers to Scale with the ADAS Market

This blog post was originally published at Qualcomm’s website. It is reprinted here with the permission of Qualcomm. The automotive industry is well into the transformation of vehicle architectures and consumer-driven experiences. As the demand for advanced driver assistance systems (ADAS) technologies continues to soar, Qualcomm Technologies’ cutting-edge Snapdragon Ride Platforms are setting a new standard for automotive

Read More »

“The New OpenCV 5.0: Added Features, Performance Improvements and Future Directions,” a Presentation from OpenCV.org

Satya Mallick, CEO of OpenCV.org, presents the “New OpenCV 5.0: Added Features, Performance Improvements and Future Directions” tutorial at the May 2025 Embedded Vision Summit. In this presentation, Mallick delves into the latest version of OpenCV, the world’s most popular open-source computer vision library. He highlights the major innovations and… “The New OpenCV 5.0: Added

Read More »

Maximize Robotics Performance by Post-training NVIDIA Cosmos Reason

This blog post was originally published at NVIDIA’s website. It is reprinted here with the permission of NVIDIA. First unveiled at NVIDIA GTC 2025, NVIDIA Cosmos Reason is an open and fully customizable reasoning vision language model (VLM) for physical AI and robotics. The VLM enables robots and vision AI agents to reason using prior

Read More »

“Introduction to Shrinking Models with Quantization-aware Training and Post-training Quantization,” a Presentation from NXP Semiconductors

Robert Cimpeanu, Machine Learning Software Engineer at NXP Semiconductors, presents the “Introduction to Shrinking Models with Quantization-aware Training and Post-training Quantization” tutorial at the May 2025 Embedded Vision Summit. In this presentation, Cimpeanu explains two neural network quantization techniques, quantization-aware training (QAT) and post-training quantization (PTQ), and explain when to… “Introduction to Shrinking Models with

Read More »

Implementing Multimodal GenAI Models on Modalix

This blog post was originally published at SiMa.ai’s website. It is reprinted here with the permission of SiMa.ai. It has been our goal since starting SiMa.ai to create one software and hardware platform for the embedded edge that empowers companies to make their AI/ML innovations come to life. With the rise of Generative AI already

Read More »

“Customizing Vision-language Models for Real-world Applications,” a Presentation from NVIDIA

Monika Jhuria, Technical Marketing Engineer at NVIDIA, presents the “Customizing Vision-language Models for Real-world Applications” tutorial at the May 2025 Embedded Vision Summit. Vision-language models (VLMs) have the potential to revolutionize various applications, and their performance can be improved through fine-tuning and customization. In this presentation, Jhuria explores the concept… “Customizing Vision-language Models for Real-world

Read More »

Here you’ll find a wealth of practical technical insights and expert advice to help you bring AI and visual intelligence into your products without flying blind.

Contact

Address

Berkeley Design Technology, Inc.
PO Box #4446
Walnut Creek, CA 94596

Phone
Phone: +1 (925) 954-1411
Scroll to Top